CONTROLLED DOCUMENT

MODULAR POWER SUPPLIES MODELS 63005C AND 63315D

OPERATING AND SERVICE MANUAL FOR: MODEL 63005C, SERIALS 1528A-00101 AND ABOVE MODEL 63315D, SERIALS 1528A-00101 AND ABOVE

* For serials above 1528A-00101 a change page may be included.

Don Rowe

Field Support Speciolist

Fire Systems

WOQ10wIOE OAGTMER

Security

T 5193762430×417
8662982778×417
F 5193721581
don.rowe@gecom
www gesecurity.com
625-6th Street Eost
Owen Sound, ON N4K $5 \rho 8$
Canada

Agilent Technologies

Jim Nagy

Customer Service Representative
Test \& Measurement

Agilent Technologes Canada inc 2250 boul. Alfred Nobei Sant-Laurent. Ouebec H4S 209

5148322836 telephone 5148322897 tacsimile jim_nagy@aglent com www agilent.com

SECTION I GENERAL INFORMATION

1-1 DESCRIPTION

1-2 The two power supplies covered by this manual employ switching regulation for high efficiency and compactness. Both models have a maximum output power of 110 watts. In the Model 63005C, this power is delivered by a single $5 \mathrm{~V} \pm 0.25 \mathrm{~V}$ output with a 22 -amp load capacity. The Model 63315D also provides an adjustable 5V output and, in addition, a pair of dual tracking outputs that can be set within $a \pm 11.4$ to $\pm 15.75 \mathrm{~V}$ range by a single screwdriver adjustment. The Model 633150's three outputs have individual current restrictions of $18 \mathrm{amps}, 2 \mathrm{amps}$, and 2 amps , respectively, and within these limits can be operated at any combination of currents that does not exceed the supply's 110 W total output rating. (See Figure $3-5$ for the load sharing tradeoff for the Model 63315D.)

1-3 Both models are SCR preregulated and use an advanced design 20 kHz transistor switching regulator for their 5 V outputs. The ± 11.4 to $\pm 15.75 \mathrm{~V}$ outputs of the Model 63315D have two independent linear transistor series regulators.

1-4 Adjustable foldback current limit circuits protect all outputs against overload or short circuit damage by limiting the outputs to between 65% and 130% of their maximum ratings. Fixed overvoltage protection crowbar circuits are activated at 6 to 7 volts on the 5 V output and at 16 to 18 volts on the ± 11.4 to $\pm 15.75 \mathrm{~V}$ outputs. They reduce all outputs to less than 2 volts if any one output exceeds its trip voltage.
1.5 The 5 V and ± 11.4 to $\pm 15.75 \mathrm{~V}$ outputs are isolated from the chassis and from each other and may be grounded to the ground terminal provided or floated at up to 42 volts above ground.

1-6 SPECIFICATIONS

1-7 Table 1-1 lists detailed specifications for these power supplies.

1-8 Accessories

1-9 Accessories are available for mounting these supplies in a standard 19 -inch equipment rack. Consult the factory for information.

1-10 INSTRUMENT AND MANUAL IDENTIFICATION

1.11 Hewlett-Packard power supplies are identified by a two-part serial number. The first part is the serial number prefix, a number-letter combination that denotes the date of a significant design change and the country of manufacture. The first two digits indicate the year ($10=1970$, $11=1971$, etc.), the second two digits indicate the week, and the letter " A " designates the U.S.A. as the country of manufacture. The second part is the power supply serial number; a different sequential number is assigned to each power supply, starting with 00101.

1-12 If the serial number on your instrument does not agree with those on the title page of the manual, Change Sheets supplied with the manual or Manual Backdating Changes define the differences between your instrument and the instrument described by this manual.

1-13 ORDERING ADDITIONAL MANUALS

1-14 One manual is shipped with each power supply. Additional manuals may be purchased from your local Hewlett-Packard field office (see list at rear of this manual for addresses). Specify the model number, serial number prefix, and HP'Part number provided on the title page.

Table 1-1. Specifications, Models 63005C and 63315D

```
INPUT:
    87/127\textrm{Vac}\mathrm{ or 180-250Vac, single-phase, 48-63Hz}.
Voltajle range field changeable on terminal block. Internally
fused'at 5A.
AC INRUSH CURRENT:
Less than 20A peak at turnon.
```


LOAD EFFECT:

Less than 0.1% for a load current change equal to the current rating of the supply.

SOURCE EFFECT:

Less than $.02 \%$ for any change within the specified input voltage rating.

Table 1-1. Specifications, Models 63005C and 63315D (Continued)

OUTPUT:

Model 63005C: $5 \mathrm{~V} \pm 0.25 \mathrm{~V}, 22 \mathrm{~A}$
Model 63315D: $5 \mathrm{~V} \pm 0.25 \mathrm{~V}, 18 \mathrm{~A} *$
+11.4 to $+15.75 \mathrm{~V}, 2 \mathrm{~A}^{*}$
-11.4 to $15.75 \mathrm{~V}, 2 \mathrm{~A}^{*}$
(Screwdriver voltage adjustments are accessible through holes in the panel.)
*Maximum load currents cannot be obtained simultaneously.
See Figure 3-5 for load sharing tradeoff.
TRACKING ACCURACY (Model 63315D dual output): $\pm 2 \%$.

PARD (Ripple and Noise):
All outputs: Less than 5 mV rms and 40 mV p-p $(20 \mathrm{~Hz}$ to 20 MHz).

EMI CHARACTERISTICS:

Conducted EMI complies with VDE 0875/7.71, Level N.
SAFETY STANDARDS:
Designed to conform to recommendations of IEC 348. Approved by UL for inclusion in their Recognized Component Index under Guide QOFU2, File E51529.

DIELECTRIC WITHSTAND VOLTAGE:
Primary to case, 1500 V rms for 1 minute.
Primary to output(s), 1500 V rms for 1 minute.
Output(s) to case, 500 Vdc for 1 minute.

INSULATION RESISTANCE:

At least 10 megohms from any output to case or from 5 V output to ± 12 to $\pm 15 \mathrm{~V}$ outputs.

LOAD TRANSIENT RECOVERY:

Less than 1.0 msec (5 V output) or $25 \mu \mathrm{sec}(\pm 12$ to $\pm 15 \mathrm{~V}$ outputs) for output recovery to within 1% of nominal output voltage following a load change from full to half load or vice versa.

CARRYOVER TIME:

Output voltage remains within 2% of specified nominal for more than 20 msec while delivering full load current following removal of ac input power.

TEMPERATURE COEFFICIENT:

Less than $.015 \%$ output voltage change per degree Celsius over the operating range from 0 to $40^{\circ} \mathrm{C}$ at constant load and line voltage after 30 minutes warmup.

TEMPERATURE RANGES:

Operating: 0 to $40^{\circ} \mathrm{C}$ ambient. For temperatures greater than $40^{\circ} \mathrm{C}$, output current must be derated linearly to 50%
of maximum at $70^{\circ} \mathrm{C}$ ambient.
Storage: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
COOLING:
Convection cooled. (In some applications, can be conduction cooled through surface at end of case after removing finned heatsink. Consult factory for recommendations.)

THERMAL PROTECTION:

Heatsink-mounted thermostat shuts off output(s) if supply overheats due to high ambient temperature. Thermostat automatically resets when unit cools to safe operating temperature.

CURRENT LIMIT PROTECTION:

Accessible screwdriver adjustment(s) are factory set to limit load current to approximately 120% (5 V output) or 130% (± 12 to $\pm 15 \mathrm{~V}$ outputs) of rated maximum current. Foldback current limit characteristics are shown in Figures 3-6 and 3-7. Adjustment range is approximately 65 to 130% of rated load current in Model 63005C and 65 to 150\% in Model 63315 D .

OVERVOLTAGE PROTECTION:

Non-adjustable overvoltage crowbar reduces output(s) to less than 2 V when trip level of 6 to 7 V is exceeded at the 5 V output or 16 to 18 V is exceeded on either 12 to 15V output. In the Model 63315D, an overvoltage trip at any one output shuts down all three outputs.

REVERSE VOLTAGE PROTECTION:

Output(s) are protected from damage due to the application of a reverse polarity voltage.

REMOTE SHUTDOWN:

A contact closure or TTL (low) input between the 5 V output's (-) or (- SEN) terminal and terminal E6 reduces all supply outputs to zero volts. The outputs return to normal on opening the contact or switching to a high logic level.

REMOTE SENSING:

Remote sensing terminals are provided which will correct for a load lead voltage drop of up to 5% while maintaining nominal voltage at the load. The load is protected if sensing leads are inadvertently opened.

DIMENSIONS:

Refer to Figure 2-1 or 2-2.
WEIGHT (Net/Shipping):
Model $63005 \mathrm{C}: 3.2 \mathrm{~kg}(7 \mathrm{lbs}) / 4.1 \mathrm{~kg}(9 \mathrm{lbs})$
Model 63315D: $4.1 \mathrm{~kg}(9 \mathrm{lbs}) / 5.0 \mathrm{~kg}(11 \mathrm{lbs})$

SECTION II
 INSTALLATION

2-1 INITIAL INSPECTION

2-2 Before shipment, this instrument was inspected and found to be free of mechanical and electrical defects. As soon as the instrument is unpacked, inspect for any damage that may have occurred in transit. Save all packing materials until the inspection is completed. If damage if found, a claim should be filed with the carrier immediately. Also, a Hewlett-Packard Sales and Service office should be notified.

2-3 Mechanical Check

2-4 This check should confirm that there are no broken connectors and that the panel surfaces are free of dents and scratches.

2-5 Electrical Check

2-6 The instrument should be checked against its electrical specifications. Section V includes an "in-cabinet"' performance check to verify proper instrument operation.

2-7 INSTALLATION DATA

2-8 The instrument is shipped ready for permanent installation or bench operation. It is necessary only to connect the instrument to a source of power and it is ready for operation.

2-9 Location and Cooling

2-10 This instrument is air cooled. Sufficient space should be allotted so that a free flow of cooling air can reach the instrument when it is in operation. At least $1 / 2$ inch clearance at the bottom of the unit is recommended to permit proper air flow. The supply should be used in an area where the ambient temperature does not exceed $40^{\circ} \mathrm{C}$. If operated at an ambient greater than $40^{\circ} \mathrm{C}$, the supply's output current must be linearly derated down to 50% at $70^{\circ} \mathrm{C}$.
2.11 It is also possible to cool this supply through conduction by removing its finned heatsink and mounting the rear surface of the supply to a suitable heat-conducting surface. Consult the factory for specific recommendations.

2-12 Mounting Orientation

2-13 Figures 2-1 and 2-2 show outline and dimension information. As shown in these figures, four mounting holes are provided on the bottom of the supply and four more are available at the rear if the heat sink is removed. If these supplies are cooled by natural convection, the upright position is the only orientation recommended. If they are cooled by forced air or if the heatsink is removed and the supply is mounted to a heat-conducting surface, they may be mounted in any position.

2-14 Input Power Requirements

2-15 The Models 63005C and 63315D may be operated from an 87 to 127 Vac or a 180 to 250 Vac , single-phase, 48 to 63 Hz power source and can be adapted for either of these input voltage ranges by the positioning of jumpers on terminals E1 through E5 on TB1. For 87 to 127 V operation, jumper E1 to E2 and E4 to E5. For 180 to 250 V operation, jumper E3 to E4 only. (When it is shipped, the supply's input jumpers are connected for 87 to 127 Vac operation.) Both models draw a maximum input current of 4 amps. The maximum input power is 190 watts for the Model 63005C and 220 watts for the Model 63315D.

Figure 2-1. Outline Diagram, Model 63005C

2-16 REPACKAGING FOR SHIPMENT

2-17 To insure safe shipment of the instrument, it is recommended that the package designed for the instrument be used. The original packaging material is reusable. If it is not available, contact your local Hewlett-Packard field office to obtain the materials. This office will also furnish the address of the nearest service office to which the instrument can be shipped and provide the Authorized Return label necessary to expedite the handling of your instrument return. Be sure to attach a tag to the instrument which specifies the owner, model number, full serial number, and service required, or a brief description of the trouble.

Figure 2-2. Outline Diagram, Model 63315D

SECTION III OPERATING INSTRUCTIONS

3-1 TURN-ON CHECKOUT PROCEDURE

3-2 The following checkout procedure serves as a brief check that the supply is operational. This procedure or the more detailed performance test of paragraph 5-6 should be followed when the instrument is received and before it is connected to any load equipment.

PREPARATION

a. Before connecting input power, check that jumpers on terminals E1 through E5 of TB1 are connected appropriately for the ac supply voltage to be used. (See paragraph 2-16.)
b. Connect all remote sensing terminals to the corresponding output terminals as shown in Figure 3-1.
c. Connect unit to input power source using AC, N, and ground ($\stackrel{\perp}{=}$) terminals of TB1;

VOLTAGE CHECKS

d. Check the voltage of the 5 V output between terminals $(+)$ and (-) on TB2 and, using a small screwdriver to turn the VOLT ADJ control, set the output to the desired value within its 4.75 to 5.25 V range.
e. (Model 63315D only). Check the voltages of the positive and negative 11.4 to 15.75 V outputs by measuring from (+) to COMMON RETURN and from COMMON RETURN to (-) on TB3. They should differ from each other by no more than $\pm 2 \%$. Turn the VOLT ADJ control to set these outputs to the desired voltage.

CURRENT LIMIT CHECKS

f. To check the operation of the current limit circuit for the 5 V output, connect the test setup shown in Figure $5-2$ to the output, using a variable load resistor for R_{L} that can be adjusted from about 0.15Ω to about 0.5Ω. The load resistor must be able to dissipate 110 watts. Set

Figure 3-1. Load Connections, Local Sensing
R_{L} to its maximum resistance and apply power to the supply . Decrease the resistance of R_{L} gradually while observing the output current indicated by the DVM. The current should increase to some maximum value, which is the current limit setting, and then begin to decrease. To adjust the current limit setting, see paragraph 5-46.
g. (Model 63315D only). Check the operation of the current limit circuit for the positive 11.4 to 15.75 V output by the method described in (f) above, but using a variable load resistor with an adjustment range of about 4Ω to 15Ω and a 50 W power rating. Repeat for the negative output. To adjust the current limit settings, see paragraph 5-46.

OVERVOLTAGE PROTECTION CHECKS

h. Because the supply's output voltage adjustment ranges are limited and the overvoltage trip circuits are not adjustable, checking the overvoltage trip circuits requires the use of an external power supply. The supply needed for checking the overvoltage trip for the 5 V output should be able to supply 5 to 7 Vdc at a current of at least 2 amps . To avoid causing damage to the supply under test, the external supply's maximum available current should be no more than 5 amps. To check that the overvoltage trip circuit for the 5 V output is operational, energize the external supply and adjust its output to 7 volts. Energize the 63005C or 63315D supply and then momentarily connect the output of the external supply across its 5 V output terminals, negative to negative and positive to positive. After disconnecting the external supply, check for the presence of voltage at the outputs of the supply under test. All outputs should be at zero volts. Deenergize the supply under test for 10 seconds and then restore power. Check that all outputs have returned to normal.
i. (Model 63315D only). A similar method is used for checking the ± 11.4 to $\pm 15.75 \mathrm{~V}$ outputs of the Model 63315 D . An external supply is needed that can provide 15 to 18 Vdc at a current of at least 0.5 amps . Its maximum available current should be no more than 5 amps . To check the overvoltage trip circuit for the positive 11.4 to 15.75 V output, energize the external supply and adjust its output to 18 volts. Energize the 63315D supply and then momentarily connect the output of the external supply across the (+) and COMMON RETURN output terminals of the 63315D, positive to positive. After disconnecting the external supply, check that all outputs of the supply under test have dropped to zero volts and that deenergizing the supply for 10 seconds restores the outputs to normal.
j. (Model 63315D only). To check the overvoltage trip circuit for the negative 11.4 to 15.75 V output, repeat the procedure given in step (i) above, except connect the external supply across the (-) and COMMON RETURN output terminals of the 63315D, negative to negative.

REMOTE SHUTDOWN

k. Verify that connecting a jumper between terminals E6 and (- SEN) on TB2 reduces all outputs of the supply to zero volts and that disconnecting the jumper restores all outputs to their normal voltages.
3.3 If this brief checkout procedure or later use of the supply reveals a possible malfunction, see Section V of this manual for detailed test, troubleshooting, and adjustment procedures.

3-4 OPERATION

Before applying power to the supply, make certain that jumpers E1 through E5 on TB1 are connected appropriately for the ac line voltage to be used.

3-5 The following paragraphs discuss the various operating modes and features of the Model 63005C and 63315D supplies. Their 5 V outputs can be used with local or remote voltage sensing. The ± 11.4 to $\pm 15.75 \mathrm{~V}$ outputs of a Model 633150 supply can be used as a dual output supplying positive and negative voltages or they can be connected to provide a single output providing 22.8 to 31.5 volts. Local or remote sensing can be used with both the dual and single load connections. The 5 V outputs of two single output supplies can be connected in parallel and two or more of them can be connected in series.

3-6 The DC Power Supply Handbook, Application

 Note 90A, contains a considerable amount of general information on using regulated dc power supplies effectively and is available at no charge from your local HP sales office.
3-7 Connecting Loads

3-8 Figure 3-1 shows the strapping arrangement for connecting loads to the supply using local voltage sensing and supplying two separate loads from the ± 11.4 to $\pm 15.75 \mathrm{~V}$ outputs. The positive (master) supply powers $R_{\mathrm{L} 2}$ and the negative (slave) supply powers $R_{L 3}$. As the VOLT ADJ control for the dual outputs is adjusted, the slave supply's output tracks that of the master within $\pm 2 \%$. Either terminal of the 5 V output and any one terminal of the dual output may be grounded, if desired, either at the supply's ground $(\stackrel{1}{=})$ terminal or at the load. (See paragraph 3-12.)

Figure 3-2. Single Load, Local Sensing
3-9 To use the dual outputs to supply 22.8 to 31.5 volts to a single load, use the strapping arrangement shown in Figure 3-2. Either the $(+)$ or ($(-)$ output terminal may be grounded, as required. (See paragraph 3-12.)

3-10 Each load should be connected to the proper supply output terminals using separate pairs of connecting wires. This will minimize mutual coupling effects between loads and will retain full advantage of the low output impedance of the supply. Each pair of connecting wires should be as short as possible, should be of adequately heavy gage, and should be twisted or shielded to reduce noise pickup. If shield is used, connect one end to the power supply ground terminal and leave the other end unconnected.

3-11 If load considerations require that the output power distribution terminals be remotely located from the power supply, then the power supply output terminals should be connected to the remote distribution terminals by a pair of twisted or shielded wires and each load separately connected to the remote distribution terminals. Remote sensing should be used under these circumstances. (See paragraph 3-14.)

3-12 Grounding

3-13 The 5V output can be used either as a positive or a negative supply by grounding one of its output terminals or one end of the load.

WARNING

Ground at only one point in the setup and always use two wires to connect the load to the supply. This eliminates the possibility of load current return paths through the ac ground line which could open the chassis ground path and create a hazardous condition.

This supply can also be operated at up to 42 Vdc above ground, if neither output bus is grounded.

3-14 Remote Sensing

3-15 Remote sensing is used to maintain good regulation at the load by reducing the degradation in regulation that would occur due to the voltage drop in the leads between the power supply and the load. For reasonable load lead lengths, remote sensing greatly improves the performance of the supply. However, if the load is located a considerable distance from the supply, added precautions must be observed to obtain satisfactory operation. Because the voltage drop in the load leads subtracts directly from the available output voltage, it is recommended that the total drop in both load leads not exceed 5\% of the supply's nominal output voltage.

3-16 The leads from the sensing terminals to the load carry much less current than the load leads, so these leads need not be as heavy as the load leads. However, they must be twisted or shielded to minimize noise pickup.

Figure 3-3. Load Connections, Remote Sensing
3-17 Figure 3-3 shows the strapping arrangement for connecting loads to the supply using remote sensing. When the loads on the dual outputs of a Model 63315D are located a considerable distance from each other, the COMMON RETURN load lead and the RETURN SENSE lead should be connected together at a remote sensing point that is equidistant from the two loads. This ensures that the regulation characteristics of both outputs will be equal.

3-18 Figure $3-4$ shows the connections necessary for powering a single load from the dual output using remote sensing. The (+ SEN) and (- SEN) sensing leads should be connected as close as possible to the load.

Figure 3-4. Single Load, Remote Sensing

3-19 Output Ratings

3-20 Model 63005C. The Model 63005C is capable of providing 22 amps at $5 \mathrm{~V} \pm 0.25 \mathrm{~V}$ at ambient temperatures up to $40^{\circ} \mathrm{C}$. Above $40^{\circ} \mathrm{C}$, the output current must be linearly derated to 50% at the maximum operating temperature of $70^{\circ} \mathrm{C}$.

3-21 Model 63315D. Individually, the maximum output currents of the Model 63315D are 18 amps at the 5 V $\pm 0.25 \mathrm{~V}$ output and 2 amps at each of the 11.4 to 15.75 V outputs. These maximum currents are not available simultaneously, though, due to the 110 W total output rating of the supply. Figure $3-5$ illustrates the load sharing tradeoff between the 5 V and the ± 11.4 to $\pm 15.75 \mathrm{~V}$ outputs. Above $40^{\circ} \mathrm{C}$, these output currents must be linearly derated to 50% at the maximum operating temperature of $70^{\circ} \mathrm{C}$.

Figure 3-5. Load Sharing Tradeoff, Model 63315D

3-22 Current Limiting

3-23 The current limiting characteristics of these supplies are shown in Figures 3-6 and 3-7. The current limit circuits in these supplies provide foldback limiting, which reduces the output current as the voltage decreases. This results in a short-circuit current that is less than the maximum available at the rated output voltage. The circuits are selfrestoring and return the output voltage to normal when the overload is removed. Figures 3-6 and 3-7 show the approximate factory settings and adjustment ranges for the current limiting circuits. Changing the setting of the control affects the maximum output current as shown but has no effect on the short circuit current. Procedures for adjusting the operating points of the current limit circuits are given in paragraph 5-46.

3-24 When adjusting the current limit, ensure that the new set point is at least 20% above the expected operating current. Operating the supply too close to the current limit set point may degrade performance.

3-25 Since, in the dual outputs of the Model 63315D,
the voltage of the slave (negative) supply depends on that of the master (positive) supply, the occurance of current limiting in the master supply reduces the voltage of both outputs. If a single load is connected across both outputs as shown in Figures 3-2 and 3-4, the initial current limit point is determined by the current limit circuit with the lower setting and the short circuit current is governed by the master supply.

3-26 Overvoltage Protection

3-27 Each output of this supply has an independent fixed crowbar circuit to protect sensitive loads from excessive voltages. The circuit for the 5 V output is activated between 6 and 7 volts and the ones for the dual outputs of the Model 63315D are activated between 16 and 18 volts. After a crowbar circuit fires, all outputs of the supply fall to zero volts. To restore normal operation after an overvoltage shutdown has occurred, ac power must be removed from the supply for at least 10 seconds. If the crowbar trips again when power is restored, refer to the troubleshooting information in Section V of this manual.

Figure 3-6. 5V Output, Current Limit Characteristics

Figure 3-7. Model 63315D, Dual Output, Current Limit Characteristics

3-28 Remote Shutdown

3-29 If remote control of the power supply is required, all outputs of the supply can be operated remotely through a contact connected from terminal E6 on TB2 to either the (-) or the (- SEN) terminal of the 5 V output. Closing this contact reduces all outputs to zero volts; opening it restores all output voltages to normal.

3-30 The remote shutdown input can also be controlled by a TTL digital input signal. Use the (-) or (-SEN) terminal of the 5 V output as the common input and apply TTL logic levels to terminal E6. A low logic level shuts down the supply; a high logic level input resotres the outputs.

3-31 Parallel Operation

3-32 The 5 V outputs of two Model 63005C supplies can be operated in parallel. Set the output of one supply to the desired voltage, and set the other supply for a slightly higher voltage. The supply set to the lower output voltage will act as a constant voltage source, while the supply set to the higher output will act as a current-limited source, dropping its output voltage until it equals that of the other supply The constant voltage source will deliver only that fraction of its total rated output current which is necessary to fulfill the total current demand.

3-33 Series Operation

3-34 Either the 5 V or the ± 11.4 to $\pm 15.75 \mathrm{~V}$ outputs of two or more supplies can be connected in series to obtain a higher voltage than is available from a single supply. The restriction against operating these supplies with their outputs at a potential greater than 42 volts above ground limits the number which can be connected in series.
3.35 Notice that series operation creates the possibility of a reverse voltage being applied across the output terminals of a deenergized supply that is in series with an energized one. If this occurs, the resulting reverse current flows through A2U4 in the 5 V supply or diodes A3CR1 or CR16, which protect the $\pm 15 \mathrm{~V}$ outputs against reverse voltage.

CAUTION

> When operating these supplies in series, turn them on and off simultaneously if possible. If this cannot be done, ensure that all units are turned on or off within 25 seconds to minimize the possibility of damage to the output diodes.

SECTION IV PRINCIPLES OF OPERATION

4-1 INTRODUCTION

4-2 This section presents the principles of operation for the Models 63005C and 63315D switching-regulated modular power supplies. The Model 63005C single-output supply employs just two of the circuit boards shown in the simplified schematic of Figure 4-1, A1 and A2.' The A1 board contains an SCR preregulator whose dc output is filtered to provide a regulated 100 V dc input to a singletransistor switching regulator. On the A2 board, the 20 kHz output from a switching regulator transformer secondary is rectified and filtered to produce a regulated 5 V dc output at a maximum current of 22 amps . Also on the A 2 board are the voltage control, output current limit, and overvoltage protection circuits for the 5 V output.

4-3 In the Model 63315D, A1 and A2 boards very similar to those in the Model 63005 C produce a 5 V output with a maximum current rating of 18 amps , and an additional A3 board contains a dual linear regulator which produces two tracking outputs with an output voltage range of ± 11.4 to ± 15.75 volts at a maximum current of 2 amps . The maximum load currents for the $\pm 15 \mathrm{~V}$ (nominal) outputs and the 5 V output cannot be obtained simultaneously but are interdependent as shown in Figure 3-5. The $\pm 15 \mathrm{~V}$ outputs draw power from two additional secondaries on the 20 kHz switching regulator transformer and are regulated by two seriestransistor regulators connected in a master-slave configuration. These outputs are individually protected against overcurrent and overvoltage. An overvoltage condition at any one of the supply's three outputs shuts down all three outputs.

4-4 SIMPLIFIED SCHEMATIC DIAGRAM DISCUSSION

4-5 The following discussion of the overall circuit operation of the Models 63005C and 63315D is based on the simplified schematic of Figure 4-1.

4-6 AC-DC Converter Assembly (A1 Board)

4-7 Preregulator. The ac input to the A1 board is connected through an RFI filter directly to the input of a preregulator bridge composed of two diodes and two SCRs. The firing angle of the SCRs is controlled by the preregulator control circuit so that their full-wave rectified output, after being filtered by a 2 -section LC filter, averages

100 volts dc. The preregulator control circuit consists of a comparator-amplifier which compares the voltage at its input to a zener reference voltage and controls the firing delay of a programmable unijunction transistor in the firing circuit. During each half-cycle of the ac line input, one output pulse from the unijunction is coupled to the SCR gates by pulse transformer A1T1. If the 100 V output tends to increase, the comparator-amplifier reduces the conduction angle of the SCRs. If the voltage tends to decrease, the conduction angle is increased. The reset switch discharges the timing capacitor in the firing circuit at the end of each half-cycle of the ac line input.

4-8 The supply is designed for two ac line voltage ranges (87 to 127 Vac and 180 to 250 Vac) and can easily be converted from one to the other by changing jumper positions on terminals E1 through E5 on an external terminal block.

4-9 $\quad 20 \mathrm{kHz}$ Switching Regulator. The supply's 5 V output is regulated by a single-transistor switching regulator connected in series with the 100 V output of the pre regulator and the primary winding of power transformer A2T2, on the A 2 board. The 5 V output is regulated by controlling the percentage of the time that switching transistor A1O5 conducts. The transistor's switching rate is controlled by an IC timer in the 20 kHz clock circuit. The on-time of the switching transistor is controlled by a pulse width modulator located on the A2 board.

4-10 The clock establishes the basic timing cycle for the regulator by generating an alternating sequence of switching transistor turn-on and turn-off pulses which are conducted to the base of A105 through pulse transformer A1T2. The maximum duty cycle of the switching transistor is 60%. Each time that a turn-on clock pulse switches A 105 on, a base drive pulse produced by a regenerative bias winding of A2T2 keeps A1O5 on until a turn-off signal appears.

4-11 Following each clock turn-on pulse, there are three signals that can turn off the switching transistor. They are:

1. a voltage control pulse from the pulse width modulator,
2. a primary peak current limit pulse from a current limit comparator in the switching regulator,
3. a turn-off pulse from the clock.

The first of these three signals to appear after each clock
turn-on pulse turns A1Q5 off until the next clock turn-on pulse initiates the next operating cycle.

4-12 Normally, it is the voltage control pulse that turns off A1Q5. An optically coupled isolator in its signal path provides electrical isolation between primary and secondary circuits. The timing of this pulse controls the voltage of the 5 V output. A tendency for the output voltage to decrease is compensated by an increase in the delay between the clock turn-on pulse and the subsequent turn-off pulse from the pulse width modulator. If the output tends to increase, the delay is reduced. Slow turn-on control, output current limit, and remote shutdown signals are also communicated through this path from the A2 board. The generation of these signals is covered in the discussion of the A2 board.

4-13 The second switching transistor turn-off signal listed in paragraph $4-11$ is produced by a fixed current limit comparator that monitors the peak current through A1R37 during each pulse that A1Q5 conducts and immediately turns off A1O5 if this current exceeds a preset level. This current limit circuit on the primary side of the
transformer serves as a backup to the protection provided by an adjustable output current limit circuit on the secondary side. The primary peak current limit circuit has a higher set point than the one on the secondary side and functions solely to protect the switching transistor.

4-14 The third turn-off signal listed in paragraph 4-11, the clock turn-off pulse, limits the maximum on-time of A105 to 30 microseconds of each $50 \mu \mathrm{sec}$ operating cycle to avoid transformer saturation.

4-15 Between the time a turn-off signal ends A1O5's conduction interval and the time the clock turn-on pulse turns A1Q5 on again, the collapsing field of transformer A2T2 generates a current pulse in a flyback winding which CR18 conducts to return this energy to capacitor A1C13 at the input to the switching regulator. This keeps the transformer core out of saturation by resetting it before the next operating cycle begins.

4-16 The clock receives its +14.7 V operating bias from a shunt zener regulator composed of R21 and VR2. An

Figure 4-1. Models 63005C and 63315D Simplified Schematic Diagram
excessive A105 switching transistor heatsink temperature opens thermal switch S 1 to interrupt the 100 V supply to the clock bias regulator. This stops the clock to leave A105 safely turned off. S1 remains open until the heatsink has cooled to a safe operating temperature.

4-17 In case of an overvoltage condition at the 5 V output of the Model 63005 C or at any of the outputs of the triple output model, an overvoltage trip pulse fires an SCR connected as a clock shutdown switch which shorts the 14.7 V bias supply to the clock to shut down the switching regulator.

4-18 5V Switching Regulator Assembly (A2 Board)

4-19 On the A2 board, the 20 kHz ac voltage at one secondary of switching regulator power transformer A2T2 is half-wave rectified and then filtered by a 2 -section LC filter to provide a regulated 5 V dc output. This board also contains circuits that regulate the output voltage, turn on the switching regulator slowly when power is first applied, limit the output current, and shut down the supply if an overvoltage occurs at the 5 V output. The output voltage regulation, slow turn-on, and output current limit functions are controlled through input signals to the pulse width modulator, whose output is transmitted through the optically coupled isolator on the A1 board to the switching transistor.

4-20 Voltage Regulation. Each output pulse from the pulse width modulator causes switching transistor A1O5 in the switching regulator to stop conducting. Thus, the output voltage is regulated by controlling the duration of Q5's conduction intervals. The pulse width modulator controls the timing of its output pulses by comparing two input signals. One of them is a dc level received from the output of the constant voltage comparator. This signal varies depending on the difference between the supply's output voltage and that of a fixed reference. An increase in the supply's output voltage changes this dc level in the negative direction. The pulse width modulator compares this dc level to a combined dc and ripple signal taken from the output of the first section of the LC filter.

4-21 When the clock on the A1 board turns A1Q5 on, the positive voltage at the secondary of transformer A2T2 begins charging A2C5 through inductor A2L1. The pos-itive-going ramp voltage waveform on these capacitors and the dc level from the constant voltage comparator are both attenuated and applied to two inputs of a comparator within the pulse width modulator. The pulse width modulator's output pulse to the isolator is produced each time the dc plus ripple voltage input from A2C5 exceeds the dc level input from the constant voltage com-
parator. The input pulse to the isolator turns on a light emitting diode (LED) which turns on a phototransistor. When the phototransistor conducts, it turns off switching transistor A1Q5.

4-22 Now that A105 has been turned off, the negativegoing voltage at the input to inductor A2L1 resets the pulse width modulator for the next operating cycle, which begins when the clock turns on A1O5 again.

4-23 If the voltage at the 5 V output tends to decrease, the dc level input to the pulse width modulator increases. As a result, it takes slightly longer for the ramp waveform of the ripple voltage to exceed this higher dc level at the comparator inputs. Thus, the delay before A1O5 is turned off is increased slightly to increase A105's conduction time and compensate for the decreased output.

4-24 Slow Turn-on Control. The slow turn-on control circuit prevents an output voltage overshoot from occuring and actuating the overvoltage trip circuit when ac power is first applied to the supply. The circuit consists of an r-c network that slows down the initial rise in voltage of the dc level input to the pulse width modulator from the constant voltage comparator. This causes the switching regulator to bring up the output voltage smoothly to its nominal value.

4-25 Output Current Limiting. The 5V output is protected against an overload or short circuit by an adjustable foldback current limit circuit which reduces the output voltage and current as an overload increases. The current limit characteristics of the 5 V output are shown in Figure 3-6 or 3-7. To obtain these current limit characteristics, the output current limit comparator compares the voltage developed across current sampling resistor R24 to a reference voltage developed across R20. When the voltage across R24 exceeds this reference, the output of the comparator reduces the dc level input to the pulse width modulator to reduce the supply's output. The resulting reduction in output voltage decreases the contribution made to the reference voltage across R20 by current from the positive output line through R34 and R18. This reduces the output current limiting point as the output voltage decreases. If the output is short-circuited, the circuit reduces the output current to the value determined by the reference voltage developed by the current through R17 alone. For this reason, output current limit adjust R34 affects the maximum output current while leaving the short-circuit current fixed.

4-26 Remote Shutdown. A contact closure or TTL input signal applied between remote shutdown terminal E6 and either the negative output or the negative sensing terminal of the 5 V supply reduces all outputs of the supply
to zero. This input signal shuts down the outputs by lowering the dc level input to the pulse width modulator. The outputs of the supply return to normal on removal of the remote shutdown input signal.

4-27 Overvoltage Protection. An overvoltage protection circuit monitors the 5V output and fires SCR A2Q1 if the voltage exceeds a preset trip level of 6 to 7 volts. When A2O1 fires, it immediately discharges the filter capacitors across the 5 V output to reduce the output to less than 2 volts. At the same time, a current pulse from A2T1 fires the clock shutdown switch SCR on the A1 board to remove power from the clock and shut off A1Q5. This reduces all output voltages to zero. In order to restore the supply to operation, its ac input must be removed for a minimum of 10 seconds and then reapplied.

4-28 Dual Linear Regulator Assembly (A3 Board) (Model 63315D only)

4-29 Two series-transistor regulators on the A3 board provide dual tracking outputs of ± 11.4 to ± 15.75 volts. The input power to these regulators is obtained from two additional secondary windings of transformer A2T2 and is half-wave rectified and filtered on the A3 board.

4-30 Voltage Regulation. The regulators for the positive and negative outputs are similar except that the one for the positive output compares its output voltage to that of a zener reference while the one for the negative output compares the voltage at the COMMON RETURN output terminal to the voltage at the junction of two equal resistors, A3R27 and A3R28, which are connected across the posi-
tive and negative outputs. This is why the output voltage of the negative (or slave) supply matches that of the positive (or master) supply within a $\pm 2 \%$ tolerance and a single voltage adjustment control, A3R11, controls both outputs. The constant voltage comparators regulate the outputs of the supply by controlling the conductance of series regulator transistors A3O1 and A3O4.
4.31 Output Current Limiting. A current limit comparator for each regulator monitors the voltage drop across current sampling resistor R7 or R22 and compares it to an adjustable reference voltage across R9 or R23 that is derived from the regulator's output. If the voltage drop across the current sampling resistor exceeds the reference voltage, the comparator's output signal to the series regulator causes the output voltage and current to be reduced. This reduction in the output voltage reduces the current limit circuit's reference voltage to produce the foldback current limit characteristic shown in Figure 3-8. Because of the dual tracking interconnection between the positive and negative supplies, the output voltages of both are reduced if the positive output is overloaded.

4-32 Overvoltage Protection. To protect loads on the $\pm 15 \mathrm{~V}$ outputs against overvoltage, an overvoltage protection comparator monitors each output and fires an SCR connected across the $\pm 15 \mathrm{~V}$ outputs if either exceeds the preset trip level of 16 to 18 volts. When SCR A3Q6 fires, it shorts the $\pm 15 \mathrm{~V}$ outputs and simultaneously sends an overvoltage trip pulse through A2T1 to the clock shutdown switch on the A1 board to shut down the clock. Thus an overvoltage condition at any of the triple output supply's three outputs will shut down the entire supply.

SECTION V MAINTENANCE

5-1 INTRODUCTION

5-2 Upon receipt of the power supply, the performance test of paragraph 5-6 can be made. This test is suitable for incoming inspection. Section III contains a quick but less comprehensive checkout procedure which can be used in lieu of the performance test if desired.

5-3 If a fault is detected in the power supply while making the performance test or during normal operation, proceed to the troubleshooting procedure in paragraph $5-27$. After troubleshooting and repair, repeat the performance test to ensure that the fault has been properly corrected and that no other faults exist. Before performing any maintenance check, turn on the power supply and allow a half-hour warm-up.

5-4 TEST EQUIPMENT REQUIRED

5-5 Table 5-1 lists the test equipment required to perform the various procedures described in this section.

5-6 PERFORMANCE TEST

5-7 The following test can be used as an incoming inspection check and appropriate portions of the test can be repeated to check the operation of the instrument after repairs. The tests are performed using the specified nominal input voltage for the unit. If the correct result is not obtained for a particular check, proceed to troubleshooting (paragraph 5-27).

CAUTION

Before applying power to the supply, make certain that jumpers E1 through E5 on TB1 are connected appropriately for the ac line voltage to be used.

Table 5-1. Test Equipment Required

TYPE	REQUIRED CHARACTERISTICS	USE	RECOMMENDED MODEL
Digital Voltmeter	Sensitivity: $100 \mu \mathrm{~V}$ full scale (min.). Input impedance: 10 megohms (min .).	Measure DC voltages: calibration procedures	HP 3450A
Variable Voltage Transformer	Range: 90-130Vac Equipped with voltmeter accurate within 1 volt	Vary AC input	-----
Oscilloscope	Sensitivity: $5 \mathrm{mV} / \mathrm{cm}$. Bandwidth: 20 MHz (min.) Differential input	Display transient response and ripple and noise waveforms.	HP 180A with 1821A, and 1801A or 1803A plug-ins.
Repetitive Load Sw.	Rate: $60 \mathrm{~Hz}, 2 \mu \mathrm{sec}$ rise and fall time	Measure transient response.	See Figure 5-4
Resistive Loads	Tolerance: $\pm 5 \%$	Power supply load resistor (fixed resistor or rheostat).	James G. Biddle ('Lubri-Tact" Rheostat)
Current Sampling Resistor (Shunt)	Accuracy: 1\%	Measure 5V output current; Measure $\pm 15 \mathrm{~V}$ output current	Empro Ṡhunt, A-50-50; 0.1Ω resistor HP No. 0811-2061

5-8 General Measurement Techniques

5-9 Connecting Measuring Devices. To achieve valid results when measuring the load effect, PARD (ripple and noise), and transient recovery time of the supply, measuring devices must be connected across the supply's sensing terminals. If a measurement were made across the load, it would include the impedance of the leads to the load. This impedance can easily be several orders of magnitude greater than the supply impedance, and would thus invalidate the measurement. To avoid mutual coupling effects, each measuring device must be connected directly to the supply's sensing terminals by separate pairs of wires.

5-10 Output Current Measurements. Accurate output

 current measurements can be made by inserting a low resistance current sampling resistor in series with a load resistor of appropriate resistance and wattage. Table 5-1 recommendes two four-terminal resistors suitable for use as current sampling resistors for the 5 V and $\pm 15 \mathrm{~V}$ outputs. Figure 5-1 shows a four-terminal meter shunt. The load current through a shunt must be fed to the extremes of the wire leading to the resistor while the sampling connections are made as close as possible to the resistance portion itself.
NOTE

Output current limiting would interfere with accurate measurements of the supply's performance. Avoid current limiting by making certain that the current limit adjustments are set sufficiently above the rated output current.

5-11 Rated Output

5-12 To check that the supply will furnish its rated output voltage (s) and current(s), proceed as follows:
a. Connect in series across the (t) and (-) terminals of the 5 V output a suitable load resistor, a current sampling resistor, and a switch, as shown in Figure 5-2. The load resistor must be of the proper value and of adequate wattage to draw full rated current from the 5 V output.
b. Connect a digital voltmeter across the (+ SEN) and (- SEN) terminals of the 5 V output, observing correct polarity.

Figure 5-1. Current Sampling Resistor Connections

Figure 5-2. Rated Output, Test Setup
c. Apply input power to the supply and, with the load switch open, set the voltage of the 5 V output to any desired value within the adjustment range. This output voltage can be used for all remaining 5 V performance tests.
d. Connect the voltmeter across the current sampling terminals of the current sampling resistor, close the load switch, and adjust R_{L} until the voltmeter indicates a voltage drop corresponding to the 5 V output's maximum rated current.
e. Reconnect the voltmeter across the (+ SEN) and (- SEN) terminals of the 5 V output and recheck its output voltage. It should be within 0.1% of the value set in step (c).
f. Steps (f) and (g) apply only to the Model 63315D. Use the same procedure described in steps (a) through (e) above to check the +11.4 to +15.75 V output. Connect a switch, a load resistor of appropriate value, and a current sampling resistor in series between the (+) and the COMMON RETURN terminals and monitor the output voltage across the (+ SEN) and RETURN SENSE terminals.
g. Check the -11.4 to -15.75 V output by using the procedure described in steps (a) through (e) above. Load the COMMON RETURN and (-) terminals and monitor the output voltage across the RETURN SENSE and (- SEN) terminals. Do not readjust the output voltage; the voltage of the negative supply should be within 2% of the positive supply's voltage.

5-13 Load Effect (Load Regulation)

Definition: The change $\triangle E_{O U T}$ in the static value of dc output voltage resulting from a change in load resistance from open circuit to a value which yields maximum rated output current (or vice versa).

5-14 To test the load effect:

a. Connect a full load resistance and a digital voltmeter across the $(+)$ and (-) terminals of the 5 V output, as shown in Figure 5-2.
b. Turn on the supply and record the voltage across
the 5 V output's sensing terminals.
c. Disconnect the load resistor and recheck the DVM indication. It should be within 0.1% of the reading in step (c).
d. Repeat steps (a) through (c) for each of the remaining supply outputs.

5-15 Source Effect (Line Regulation)

Definition: The change $\Delta \mathrm{E}_{\mathrm{OUT}}$, in the static value of dc output voltage resulting from a change in ac input voltage over the specified range from low line to high line or from high line to low line.

5-16 To test the source effect:

a. Connect a variable autotransformer between the input power source and the power supply ac input.
b. Connect a full load resistance and a digital voltmeter across the 5 V output of the supply.
c. Adjust the autotransformer for a low line input.
d. Turn on the power and record the DVM indication.
e. Adjust the autotransformer for a high line input and recheck the DVM indication. It should be within . 02% of the reading in step (d).
f. Repeat steps (b) through (e) for each of the remaining supply outputs.

5-17 PARD (Ripple and Noise)

Definition: The residual ac voltage which is superimposed on the dc output of a regulated power supply. Ripple and noise may be specified and measured in terms of its rms or peak-to-peak value.

5-18 Measurement Techniques. Figure 5-3A shows an incorrect method of measuring p-p ripple. Note that a continuous ground loop exists from the third wire of the input power cord of the supply to the third wire of the input power cord of the oscilloscope via the grounded power supply case, the wire between the negative output terminal of the power supply and the vertical input of the scope, and the grounded scope case. Any ground current circulating in this loop as a result of the difference in potential E_{G} between the two ground points causes an IR drop which is in series with the scope input. This IR drop, normally having a 60 Hz line frequency fundamental, plus any pickup on the unshielded leads interconnecting the power supply and scope, appears on the face of the CRT. The magnitude of this resulting signal can easily be much greater than the true ripple developed between the plus and minus output terminals of the power supply and can completely invalidate the measurement.

5-19 Figure 5-38 shows a correct method of measuring the output ripple of a constant voltage power supply using a single-ended scope. The ground loop path is broken by floating the power supply output. To ensure that no

A. INCORRECT METHOD-GROUND CURRENT $1 G$ PRODUCES 60 CYCLE DROP IN NEGATIVE LEAD WHICH ADDS TO THE POWER SUPPLY RIPPLE DISPLAYED ON SCOPE

B. A CORRECT METHODE USING A SINGLE ENDED SCOPE OUTPUT FLOATED TO BREAK GROUND CURRENT LOOP, TWISTED PAIR REDUCES STRAY PICKUP ON SCOPE LEADS.

Figure 5-3. Ripple and Noise, Test Setup
potential difference exists between the supply and the oscilloscope, it is recommended that they both be plugged into the same ac power bus. If the same bus cannot be used, both ac grounds must be at earth ground potential.

5-20 To verify that the oscilloscope is not displaying ripple that is induced in the leads or picked up from the grounds, the $(+)$ scope lead should be shorted to the $(-)$ scope lead at the power supply terminals. The ripple value obtained when the leads are shorted should be subtracted from the actual ripple measurement.

5-21 Measurement Procedure. To measure the ripple and noise on each supply outputs, follow the steps below. If a high frequency noise measurement is desired, an oscilloscope with sufficient bandwidth (20 MHz) must be used. Ripple and noise measurements can be made at any input ac line voltage combined with any dc output voltage and load current within rating.
a. Connect an oscilloscope or rms voltmeter across an output of the supply as shown in Figure 5-3B.
b. Energize the supply and observe the oscilloscope or meter indication. The ripple and noise should not be
greater than 5 mV rms or 40 mV peak-to-peak.
c. Repeat for the remaining supply outputs.

5-22 Load Transient Recovery Time

Definition: The time it takes for the output voltage to recover to within 1% of the nominal output following a step change in output current from full to half load or vice versa.
$5-23 \pm 11.4$ to ± 15.75-Volt Outputs. To test the load transient recovery time, a repetitive load switch with a fast switching time is required for loading and unloading the supply. Figure $5-4$ shows one way of constructing one using a relay with mercury-wetted contacts. When this load switch is connected to a 60 Hz ac input, the mercury relay opens and closes 60 times per second. The $25 k \Omega$ control adjusts the duty cycle of the load current switching to reduce jitter in the oscilloscope display. This load switch can also be used with a 50 Hz ac input.

5-24 To check the load transient recovery time of each of the ± 11.4 to $\pm 15.75 \mathrm{~V}$ outputs of the Model 63315D, proceed as follows:
a. Connect test setup as shown in Figure 5-4. Each load resistor $\left(R_{T}\right)$ is twice the normal full load resistance.
b. Turn on the supply and close the line switch on the repetitive load switch.

Figure 5-4. Load Transient Recovery Time, Test Setup
c. Adjust the oscilloscope to display the loading and the unloading transients produced by the operation of the load switch. Recovery to within 1% of the nominal output voltage should occur within 25 microseconds as shown in Figure 5-5.

5-25 5-Volt Output. The mercury-wetted relays recommended for use in the repetitive load switch described in Figure $5-4$ have a maximum current limitation of 5 amps . For this reason, some other type of repetitive load switch with a higher current capacity is required for testing the load transient recovery time of the 5 V output. The use of a solid state electrical load with pulse modulation capabilities such as the Transistor Devices Dynaload DLP 50-60-1000 is one way to avoid the rise time and switching noise limitations of mechanical switches at currents above 5 amps.

5-26 To check the load transient recovery time of the 5 V output, proceed as follows:
a. Connect test setup as shown in Figure 5-4, but in place of the load switch and contact protection network shown, substitute a solid state repetitive load switch with a current capacity of at least half of the supply's rated output and a rise time of less than 100 microseconds. (Since the supply's recovery time is specified for a change between half and full load, the switch conducts only half of the supply's rated output.) Each load resistor $\left(R_{T}\right)$ is twice the normal full load resistance.
b. Turn on the supply and the load switch.
c. Adjust the oscilloscope to display the loading and the unloading transients produced by the operation of the load switch. Recovery to within 1% of the nominal output voltage should occur within 1 millisecond as shown in Figure 5-5.

Figure 5-5. Load Transient Recovery Time Waveforms

5-28 Before attempting to troubleshoot this instrument, ensure that the fault is in the instrument itself and not in an associated piece of equipment. You can determine this without removing the covers from the instrument by using the appropriate portions of the performance test of paragraph 5-6.

5-29 A good understanding of the principles of operation is a helpful aid in troubleshooting, and the reader is advised to review Section IV of the manual before beginning detailed troubleshooting. Once the principles of operation are understood, proceed to the initial troubleshooting procedures in paragraph 5-30.

5-30 Initial Troubleshooting Procedures

WARNING

All circuits on the A1 board as well as the primary windings of transformer T2 on the A2 board are connected directly to the input ac line. Exercise extreme caution when working on energized circuits. Also, energize the supply through an isolation transformer to avoid shorting ac line energized circuits to ground through the test instrument's input leads.

——CAUTION

Before applying power to the supply, make certain that jumpers E1 through E5 on TB1 are connected appropriately for the ac line voltage to be used.

All loads should be disconnected while troubleshooting. If checks must be made that require loading the supply while the circuit boards are detached from the main heatsink, restrict the time the output is loaded to avoid overheating.

5-31 If a malfunction occurs that causes an output voltage to be high, low, or zero, proceed to the circuit board isolation procedure of Figure 5-6. This procedure identifies the board on which troubleshooting must begin. The A1 board must be operating properly before troubleshooting of the A2 board can proceed, and both the A1 and $A 2$ boards must be operating properly before troubleshooting the A 3 board. Follow all steps in the order in which they are given.

5-32 If the unit's output voltages are normal but difficulties exist with its ripple, noise, or regulation, proceed to Ripple and Regulation Troubleshooting, Table 5-2.

Figure 5-6. Circuit Board Isolation Procedure

5-33 A1 Board Troubleshooting

5-34 To troubleshoot the A1 board it must be disconnected from the A2 and A3 boards. Complete the disassembly procedure given in paragraph 5-40 and then proceed to A1 Board Troubleshooting, Figure 5-7.

5-35 A2 Board Troubleshooting

5-36 While checking the A2 board for troubles, it must be connected to a properly operating A1 board. Detach the A3 board, if present, from the A2 board and plug the A1 and A2 boards together. Then proceed to A2 Board Troubleshooting, Figure 5-8.

5-37 A3 Board Troubleshooting

5.38 While checking the A3 Board for troubles, it must be connected to A1 and A2 boards that are operating properly. In addition, problems in the positive 15 -volt supply must be corrected before it is possible to troubleshoot the negative (slave) supply. The troubleshooting procedure for the A3 board is given in Figure 5-9.

5-39 REPAIR AND REPLACEMENT

5-40 Disassembly

5-41 Follow the steps below to disassemble the unit for troubleshooting and repair.
a. Before removing the cover, remove the plastic barrier block cover and disconnect all input and output connections.
b. Remove six screws at the bottom edge of the cover and two at the top. Then it can be slid off the supply.
c. Detach the finned heatsink by removing its four screws.
d. Remove the two spacer rods from the top of the circuit boards.
e. Remove one screw from the bottom of the unit that attaches the A3 board to the chassis in the Model 63315 D .
f. Now, removing the four or six flat-head screws that were exposed by the removal of the heatsink and the three screws along the bottom edge of the A1 board will permit all boards to be detached from the chassis as a single assembly. Three A4L1 leads and one ground wire still connect the A1 board to the chassis.
g. The A1 board can be detached from the A2/A3 assembly by pulling straight apart to unplug the pins at the top of A2T2 from A1J1.
h. To separate the A2 and A3 boards, remove the two screws at opposite corners.

5.42 Reassembly

5-43 To reassemble the unit after repairs have been completed, reverse the above disassembly steps. Before reassembling the A1 and A2 boards to the main heatsink, clean the mating surfaces and both sides of the sheet of insulating material that goes between them and apply a coating of silicone grease (HP Part No. 6040-0265 or Dow Corning 340) to these surfaces.

After reassembly and before reconnecting input power to the supply, perform a high pot insulation test between primary and case, primary and output(s), and output(s) and case. Test voltages are specified in Table 1-1.

5-44 Replacing Power Semiconductors

5-45 Replace heatsink mounted power transistors and diodes by removing their mounting screws and unsoldering their pins. Use mica insulators under A2O1, A2U2, A3Q1, and A 3 Q 4 , but do not use one under A105. (The mica insulator for A2Q1 is supplied with the replacement device). When replacing power semiconductors, coat the heat transfer surfaces with silicone grease.

NOTE

When replacing any wirewound power resistors of $3 W$ rating or greater, allow a $1 / 4$-inch clearance between the resistor and the circuit board.

5-46 ADJUSTMENTS

NOTE

Before adjusting an output current limit, the voltage of that output must be set to the desired value.

5-47 To adjust the setting of one of the output current limit circuits, proceed as follows:
a. Before energizing the supply, connect across the output an oscilloscope and a load resistor equal in value to the desired output voltage divided by the desired current limit. (For example, to set the current limit of the 5 V output to 20 amps when the output is set for 5.20 volts, a 260 -milliohm 100 -watt load resistor is required.)
b. Turn the current limit adjusting pot for the output being adjusted fully clockwise (CW) to its maximum setting.
c. Energize the supply and monitor the output ripple while turning the current limit adjusting pot gradually counterclockwise (CCW) until the ripple begins to increase substantially. Set the pot to the point where the increase in ripple begins.

Table 5-2. Ripple and Regulation Troubleshooting

Excessive 120 Hz ripple.	Check voltage and ripple at preregulator output (A2TP1 to TP2). Voltage should be $+100 \pm 6 \mathrm{Vdc}$. Ripple should not exceed 12 V p-p with the supply fully loaded. Check A1C2-C7.
Excessive 20 kHz ripple or noise spikes.	Check all board mounting screws tightened securely and the following components. 5V Output: Check A2C3, C5, C6, C12, C13, C16-19, L1, L3. $\pm 15 \mathrm{~V}$ Outputs: Check A3C1, C2, C8-C11, C16-18, C20, C21, L1, L2, L5, L6.
Erratic output at some value of load current.	Check A2CR3, C4, R7, R8, R11.
Poor regulation.	a. Check remote sensing connections. b. Check the settings of current limit controls A2R34, A3R9, and A3R23. c. Check change in preregulator dc output (A1TP1 to TP12) as the supply is loaded. Troubleshoot preregulator if voltage change exceeds 6 Vdc . d. Check bias voltages: A2TP1 to TP2 (+12 to $+16 \mathrm{Vdc})$, A2TP1 to TP3 (+8 to +10 Vdc). e. Check reference voltages: A2TP13 to TP20 (+6.8 to +7.5 Vdc), and COMMON RETURN on TB3 to A3TP8 (+6.8 to +7.5 Vdc). f. Check regulator IC's (A2U4, A3U1, A3U2) and pulse width modulator (A2U1).

Table 5-3. Switching Regulator Resistance Checks
All resistance readings taken on A1 board with A2 board disconnected. One silicon junction drop equals about 0.7 volts dc.

Negative Lead	Positive Lead	Normal Indication	Probable Cause of Abnormal Indication
Q8 emitter (TP8)	Q5 base Q5 collector U3 pin 4 Q8 collector Q8 base Q10 base CR21 anode Q10 collector	47Ω open one drop $+165 \Omega$ one drop $+600 \Omega$ two drops $>5 k \Omega$ one drop $>5 k \Omega$	O5 shorted Q5 shorted U3 shorted, Q7 open Q8 shorted CR16-17, Q8 shorted Q9, Q10 shorted CR21 defective Q10, CR19 shorted
Q7 emitter	CR20 cathode Q7 collector	$\begin{aligned} & \text { open } \\ & 440 \Omega \end{aligned}$	CR20 shorted Q6, Q7 shorted
Q10 collector	CR19 anode	one drop	CR19 shorted
$\nabla(T P 1)$	VR3 anode	two drops	VR3 or VR4 defective

Table 5-3. Switching Regulator Resistance Checks (Continued)

Negative Lead	Positive Lead	Normal Indication	Probable Cause of Abnormal Indication
U3 pin 2 (Note 1)	U3 pin 1	two drops	U3 defective
CR13 cathode	CR13 anode	three drops (Note 2)	CR13 defective
CR14 cathode	CR15 anode CR11 anode	two drops one drop	CR14 or CR15 defective CR11 defective
CR12 cathode	CR12 anode	one drop	CR12 defective
Q5 collector	CR14 cathode CR18 anode Q5 base	one drop one drop one drop	CR22 defective CR18 defective O5 open
CR20 cathode	CR20 anode	one drop	CR20 defective
Q6 base	Q6 collector Q6 emitter	one drop one drop	Q6 open Q6 open
Q7 emitter	Q7 base	one drop	Q7 open
Q7 collector	Q7 base	one drop	Q7 open
Q8 base	Q8 emitter O8 collector	one drop one drop	Q8 open Q8 open
Q9 base	Q9 emitter Q10 emitter Q10 collector	one drop one drop one drop	Q9 open Q10 open Q10 open
U3 pin 5	U3 pin 6	one drop	: U3 open
U3 pin 4	U3 pin 6	one drop	U3 open

Notes: 1. Not a silicon junction. Do not apply more than 7 volts in testing.
2. May appear open on low ohmmeter range. Requires minimum of 3 volts to test.

Figure 5-7. A1 Board Troubleshooting Procedure

Figure 5-8. A2 Board Troubleshooting Procedure

Figure 5-9. A3 Board Troubleshooting Procedure

SECTION VI REPLACEABLE PARTS

6-1 INTRODUCTION

6-2 This section contains information for ordering replacement parts. Table 6.3 lists parts in alpha-numeric order by reference designators and provides the following information:
a. Reference Designators. Refer to Table 6-1.
b. Description. Refer to Table 6-2 for abreviations.
c. Total Quantity (TQ). Given only the first time the part number is listed except in instruments containing many sub-modular assembilies, in which case the TO appears the first time the part number is listed in each assembly.
d. Manufacturer's Part Number or Type.
e. Manufacturer's Federal Supply Code Number.
f. Hewlett-Packard Part Number.
g. Recommended Spare Parts Quantity (RS) for complete maintenance of one instrument during one year of isolated service.
h. Parts not identified by a reference designator are listed at the end of Table 6-3 under Mechanical and/or Miscellaneous. The former consists of parts belonging to and grouped by individual assemblies; the latter consists of all parts not immediately associated with an assembly.

6-3 ORDERING INFORMATION

6-4 To order a replacement part, address order or in. quiry to your local Hewlett-Packard sales office (see lists at rear of this manual for addresses). Specify the following information for each part: Model, complete serial number, and any Option or special modification (J) numbers of the instrument; Hewlett-Packard part number; circuit reference designator; and description. To order a part not listed in Table 6-3, give a complete description of the part, its function, and its location.

Table 6.1. Reference Designators

A	= assembly	E	= miscellaneous
B	= blower (fan)		electronic part
C	= capacitor	F	= fuse
CB	= circuit breaker	J	= jack, jumper
CR	= diode	K	= relay
DS	= device, signaling	L	= inductor
	(lamp)	M	= meter

Table 6-1. Reference Designators (Continued)

P	= plug	V	= vacuum tube,
Q	= transistor		neon bulb,
R	= resistor		photocell, etc.
S	= switch	VR	= zener diode
T	= transformer	X	= socket
TB	= terminal block	Z	= integrated cir.
TS	= thermal switch		cuit or network

Table 6-2. Description Abbreviations

A = ampere	mod. = modular or
ac = alternating current	odified
assy. = assembly	$\mathrm{mtg}=$ mounting
bd = board	$n=$ nano $=10^{-9}$
bkt = bracket	NC = normally closed
${ }^{\circ} \mathrm{C}=$ degree Centigrade	NO = normally open
cd = card	$\mathrm{NP}=$ nickel-plated
coef = coefficient	$\Omega=$ ohm
comp $=$ composition	obd = order by
CRT = cathode-ray tube	description
CT = center-tapped	OD = outside diameter
dc = direct current	$\mathrm{p}=$ pico $=10^{-}$
DPDT= double pole, double throw	P.C. $=$ printed circuit pot. = potentiometer
DPST = double pole, single throw	$\begin{aligned} & \mathrm{p}-\mathrm{p}=\text { peak-to-peak } \\ & \mathrm{ppm}=\text { parts per million } \end{aligned}$
elect = electrolytic	pur = peak reverse
encap $=$ encapsulated	voltage
$F=$ farad	rect $=$ rectifier
${ }^{\circ} \mathrm{F}=$ degree Farenheit	rms = root mean square
fx ¢ ${ }_{\text {d }}=$ fixed	$\mathrm{Si}=$ silicon
$\mathrm{Ge}=$ germanium	SPDT $=$ single pole,
$\mathrm{H}=$ Henry	double throw
$\mathrm{Hz}=$ Hertz	SPST = single pole,
IC = integrated circuit	single throw
ID = inside diameter	SS = small signal
incnd $=$ incandescent	T = slow-blow
$\mathrm{k} \quad=$ kilo $=10^{3}$	tan. $=$ tantulum
$\mathrm{m}=$ milli $=10^{-3}$	$\mathrm{Ti}=$ titanium
$\mathrm{M}=$ mega $=10^{6}$	$\mathrm{V}=$ volt
$\mu=$ micro $=10^{-6}$	var = variab
met. = metal	ww = wirewound
$\mathrm{mfr}=$ manufacturer	W = Watt

Table 6-3. Replaceable Parts

$\begin{gathered} \text { REF. } \\ \text { DESIG. } \end{gathered}$	DESCRIPTION	TQ	MFR. PART NO.	MFR. CODE	HP PART NO.	RS
A1	AC-DC Converter Assy.				$5066-245$	
C1	(not assigned)					
C2, 3	fxd, elect. $500 \mu \mathrm{~F} 150 \mathrm{~V}$	2	(Type 68D) D40701	56289	0180-1889	1
C4	fxd, cer $.01 \mu \mathrm{~F} 100 \mathrm{~V}$	2	TA	91418	0150-0093	1
C5	fxd, elect $1 \mu \mathrm{~F} 50 \mathrm{~V}$	1	150D105×0050A2	56289	0180-0230	1
C6	fxd, elect $10 \mu \mathrm{~F} 20 \mathrm{~V}$	2	150D106×9020B2	56289	0180-0374	1
C7	fxd, elect $22 \mu \mathrm{~F} 15 \mathrm{~V}$	1	150D226×9015B2	56289	0180-0228	1
C8	fxd, cer . $001 \mu \mathrm{~F} 1 \mathrm{KV}$	1	C067B102E102ZS26	56289	0150.0050	1
C9	fxd, elect $10 \mu \mathrm{~F} 20 \mathrm{~V}$		150D106×9020B2	56289	0180-0374	
C10	fxd, mica . $002 \mu \mathrm{~F} 100 \mathrm{~V}$	1	obd	72136	0160-2301	1
C11	fxd, cer $.01 \mu \mathrm{~F} 100 \mathrm{~V}$		TA	91418	0150-0093	
C12	fxd, mylar $068 \mu \mathrm{~F} 200 \mathrm{~V}$	1	292P68392	56289	0160-0166	1
C13	fxd, elect $69 \mu \mathrm{~F} 150 \mathrm{~V}$	1		28480	0180-2607	1
C14	fxd, mylar . $0022 \mu \mathrm{~F} 200 \mathrm{~V}$	1	AE12C222KT	06001	0160-0154	1
C15	fxd, elect $180 \mu \mathrm{~F} 40 \mathrm{~V}$	1		28480	0180-2606	1
CR1, 2	diode, si. 600 V 750 mA	2	SR 1358-10	04713	1901-0029	2
CR3, 4	diode, si. 400V 1.5A	2	SR1846-12	04713	1901-0418	2
CR5-10	diode, si. 80 V 200 mA	11	FDH 6308	07263	1901-0050	6
CR11	diode, si. 100V 1A	2	1N4934	04713	1901-0693	2
CR12	diode, si. 400 V 750 mA	3	SR1358-9	04713	1901-0028	3
CR13	diode, stabistor 150 mA 15 V	1	STB523	03508	1901-0460	1
CR14-17	diode, si. $80 \mathrm{~V}, 200 \mathrm{~mA}$		FDH 6308	07263	1901-0050	
CR18	diode, si. 400 V 750 mA		SR1358-9	04713	1901-0028	
CR19	diode, si. 80 V 200 mA		FDH 6308	07263	1901-0050	
CR20	diode, si. 100 V 1 A		1N4934	04713	1901-0693	
CR21	diode, si. 400 V 750 mA		SR1358-9	04713	1901-0028	
CR22	diode, si. 100 ns 400 V 1 A	1	1N4936	04713	1901-1065	1
F1	fuse, normal blow 5A 250V	1	312005	75915	2110-0010	5
J1, 2	Connector, 10 pin	2	09-52-3103	27264	1251-0628	1
L1	inductor, $370 \mu \mathrm{H}$	1		28480	5080-1807	1
Q1, 2	silicon controlled rectifier	2	40869	02735	1884-0233	2
03, 4	SS NPN Si	4	2N2222A	14433	1854-0477	4
Q5	power NP N Si	1	2N6306 (Selected)	28480	1854-0657	1
Q6	power PNP Si	1	MJE-210	04713	1853.0398	1
Q7	SS NPN Si		2N2222A	14433	1854-0477	
08-10	SS PNP Si	3	2N2907A	14433	1853.0281	3
Q11	SS NPN Si		2N2222A	14433	1854-0477	
R1, 2	fxd, comp 105% 1/2W	2	EB-1005	01121	0686-1005	1
R3	Not assigned					
R4	fxd, ww 6k 5\% 5w	1	243E	56289	0811-1559	1
R5	fxd, ww 3k 5\% 3W	2	VAL-3	24681	0812-0010	1
R6	fxd, film 4.32k 1\% 1/8W	1	MF4C-1	19701	0757-0436	1
R7	fxd, film 9.09k 1\% 1/8W	1	MF7C-1	19701	0757-0288	1
R8	fxd, comp 270k 5\% 1/4W	1	CB-2745	01121	0683-2745	1
R9	fxd, comp $205 \% 1 / 4 \mathrm{~W}$	1	CB-2005	01121	0683-2005	1
R10	fxd, comp 1.6k 5\% 1/4W	1	CB-1625	01121	0683-1625	1
R11	fxd, comp 6.2k 5\% 1/4W	1	CB-6225	01121	0683-6225	1
R12	fxd, comp 160k 5\% 1/4W	2	CB-1645	01121	0683-1645	1
R13	fxd, comp 4.3k 5\% 1/4W	1	CB-4325	01121	0683-4325	1
R14	fxd, comp 160k 5\% 1/4W		CB. 1645	01121	0683-1645	

Table 6-3. Replaceable Parts

REF. DESIG.	DESCRIPTION	TQ	MFR. PART NO.	MFR. CODE	HP PART NO.	RS
R15	fxd, comp 1k 5\% 1/4W	2	CB-1025	01121	0683-1025	1
R16, 17	fxd, comp 10k 5\% 1/4W	3	CB-1035	01121	0683-1035	1
R18	fxd, film 39k 1\% 1/8W	1	CMF-55-1, T-1	91637	0698-6076	1
R19	fxd, film 100k 1\% 1/8W	1	MF4C-1	19701	0757-0465	1
R20	fxd, film 6.49k $1 \% 1 / 8 \mathrm{~W}$	1	MF4C-1	19701	0698-3226	1
R21	fxd, ww, 3k 5\% 5W	1	243E	56289	0812-0050	1
R22	fxd, comp $1005 \% 1 / 2 \mathrm{~W}$	1	EB-1015	01121	0686-1015	1
R23	fxd, comp $1005 \% 1 / 4 \mathrm{~W}$	2	CB-1015	01121	0683-1015	
R24	fxd, film 3.83k 1\% 1/8W	1	MF4C-1	19701	0698-3153	1
R25	fxd, film 16.2k 1\% 1/8W	1	MF4C-1	19701	0757-0447	1
R26	fxd, comp $1005 \% 1 / 4 \mathrm{~W}$	1	CB-1015	01121	0683-1015	1
R27	fxd, comp $475 \% 1 / 4 \mathrm{~W}$	1	CB-4705	01121	0683-4705	1
R28	fxd, comp $185 \% 1 / 2 \mathrm{~W}$	2	EB-1805	01121	0686-1805	1
R29	fxd, comp 8205% 1/4W	1	CB-8215	01121	0683-8215	1
R30	fxd, comp $185 \% 1 / 2 \mathrm{~W}$		EB-1805	01121	0686-1805	
R31	fxd, comp 1k 5\% 1/4W		CB-1025	01121	0683-1025	
R32	fxd, comp $4305 \% 1 / 4 \mathrm{~W}$	1	CB-4315	01121	0683-4315	1
R33	fxd, ww 3 5\% 3W	1	242 E	56289	0811-1224	1
R34, 35	fxd, ww 1.5 5\% 3W	3	7/16-A-54-F	44655	0811-1220	1
R36	fxd, comp 10k 5\% 1/4W		CB-1035	01121	0683-1035	
R37	fxd, ww 0.1 10\% 3W	1	K46505	14841	0811-1827	1
R38	fxd, film 30.1 1\% 1/8W	1	MF4C-1	19701	0757.0388	1
R39	fxd, film 5.11k 1\% 1/8W	2	MF4C-1	19701	0757-0438	1
R40	fxd, film 243 1\% 1/4W	1	MF52C-1	19701	0757.0720	1
R41	fxd, film 5.11k 1\% 1/8W		MF4C-1	19701	0757.0438	
R42	fxd, ww 1.5 5\% 3W		7/16-A-54-F	44655	0811-1220	
R43	fxd, ww 3k 5\% 3W		VAL-3	24681	0812-0010	
R44	fxd, comp 10 5\% 1/4W	1	CB-1005	01121	0683-1005	1
RV1	varistor, metal oxide	1		28480	0837-0129	1
S1	switch, thermal (opens at $110^{\circ} \mathrm{C}$)	1		28480	3103-0049	1
T1	transformer, pulse, preregulator	1		28480	5080-1808	1
T2	transformer, pulse, clock	1		28480	5080-1809	1
U1	IC, thyristor-transistor array	1	CA3097E	02735	1858-0046	1
U2	IC, linear timer	1	NE555T	18324	1826-0119	1
U3	photo-isolator	1	IL-1	50579	1990-0543	1
U4	filter, RFI	1	F1798	05245	9135-0036	1
VR1	diode, zener 6.19 V	1	CD35646	15818	1902-0049	1
VR2	diode, zener 14.7V	1	CD35754	15818	1902-3203	1
VR3	diode, zener 75 V	1	SZ11213-392	04713	1902-0661	1
VR4	diode, zener 150 V	1	SZ11213-440	04713	1902-0586	1
A2	5V Switching Regulator Assy.					
C1	fxd, elect $47 \mu \mathrm{~F} 25 \mathrm{~V}$	1	672D476H025CC5B	56289	0180-0587	1
C2	fxd, elect $2.2 \mu \mathrm{~F} 20 \mathrm{~V}$	4	150D225X0020A2	56289	0180-0155	1
C3	fxd, cer $0.1 \mu \mathrm{~F} 50 \mathrm{~V}$	2	5C50B1-CML	56289	0150-0121	1
C4	fxd, mylar $022 \mu \mathrm{~F} 200 \mathrm{~V}$	1	AE17C223KT	06001	0160-0162	1
C5	fxd, elect $2000 \mu \mathrm{~F} 10 \mathrm{~V}$	2				1
C7, 8	fxd, elect $2.2 \mu \mathrm{~F} 20 \mathrm{~V}$		150D225 ${ }^{\text {P0020A2 }}$	56289	0180-0155	
C9	fxd, elect $22 \mu \mathrm{~F} 15 \mathrm{~V}$	1	150D226×9015B2	56289	0180-0228	1
C10	fxd, elect $4.7 \mu \mathrm{~F} 35 \mathrm{~V}$	1		56289	0180-0100	1

Table 6-3. Replaceable Parts

REF. DESIG.	DESCRIPTION	T0	MFR. PART NO.	MFR. CODE	HP PART NO.	RS
C11	fxd, elect $2.2 \mu \mathrm{~F} 20 \mathrm{~V}$		150D225×0020A2	56289	0180-0155	
C12	fxd, elect $2000 \mu \mathrm{~F} 10 \mathrm{~V}$					
C14	fxd, mylar . $068 \mu \mathrm{~F} 200 \mathrm{~V}$	1	292P68392-PTS	56289	0160-0166	1
C15	fxd, cer $0.1 \mu \mathrm{~F} 50 \mathrm{~V}$		5C50B1-CML	56289	0150-0121	
C16	fxd, cer $1 \mu \mathrm{~F} 25 \mathrm{~V}$	1	5C15C2-CML	56289	0160-0127	1
C17-19	fxd, cer . $05 \mu \mathrm{~F} 400 \mathrm{~V}$	3	33C17A3-CDH	56289	0150-0052	1
CR1-5	diode, silicon	5	FDH 6308	07263	1901-0050	5
L1	inductor, $123 \mu \mathrm{H}$	1		28480	5080-1810	1
L2	inductor, $8.2 \mu \mathrm{H}$	1	1537-34	99800	9140-0105	1
L3	inductor, $5 \mu \mathrm{H}$	1		28480	5080-1811	1
P1	connector, male, 10 -cond. (Model 63315D)	1	09-64-1103	27264	1251-0629	1
Q1	SCR (including mica insulator)	1	2N4441	04713	1884-0082	1
Q2	SS PNP Si	1	2N2907A	14433	1853-0281	1
R1	fxd, comp 105% 1/4W	2	CB-1005	01121	0683-1005	1
R2	fxd, comp $4705 \% 1 / 4 \mathrm{~W}$	3	CB-4715	01121	0683-4715	1
R3	fxd, comp 75 5\% 1/2W	1	EB-7505	01121	0686-7505	1
R4	fxd, comp 1.3k 5\% 1/4W	1	CB-1325	01121	0683-1325	1
R5	fxd, comp 4i7k 5\% 1/4W	1	CB-4725	01121	0683-4725	1
R6	fxd, comp 6.2k 5\% 1/4W	1	CB-6225	01121	0683-6225	1
R7	fxd, comp 3k 5\% 1/4W	1	CB-3025	01121	0683-3025	1
R8	fxd, comp 1805\% 1/4W	1	CB-1815	01121	0683-1815	1
R9	fxd, comp 3.3 5\% 1/4W	1	CB-33G5	01121	0683-0335	1
R10	fxd, film 2.37k 1\% 1/8W	1	MF4C-1	19701	0698-3150	1
R11	fxd, comp 47k 5\% 1/4W	1	CB-4735	01121	0683-4735	1
R12	fxd, film 4.32k 1\% 1/8W	1	MF4C-1	19701	0757-0436	1
R13	fxd, film 3k 1\% 1/8W	2	MF4C-1	19701	0757-1093	1
R14	fxd, comp 150k 5\% 1/4W	1	CB-1545	01121	0683-1545	1
R15	fxd, film 3k 1\% 1/8W		MF4C-1	19701	0757-1093	
R16	fxd, comp $4705 \% 1 / 4 \mathrm{~W}$		CB-4715	01121	0683-4715	
R17	fxd, film 21.5k 1\% 1/8W	1	MF4C-1	19701	0757-0199	1
R18	fxd, film 1.5k 1\% 1/8W	1	MF4C-1	19701	0757-0427	1
R19	fxd, comp 22k 5\% 1/4W	2	CB-2235	01121	0683-2235	1
R20	fxd, film 12.7 1\% 1/8W	1	CEA-993	07716	0698-4356	1
R21	fxd, comp 22k 5\% 1/4W		CB-2235	01121	0683-2235	
R22	fxd, comp 2.2k 5\% 1/4W	1	CB-2225	01121	0683-2225	1
R23	fxd, comp 470 5\% 1/4W		CB-4715	01121	0683-4715	
R24	fxd, alloy . 002 ohms	1		28480	5020-2519	1
R25	fxd, comp 82k 5\% 1/4W	1	CB. 8235	01121	0683-8235	1
R26	fxd, comp $1005 \% 1 / 4 \mathrm{~W}$	1	CB-1015	01121	0683-1015	1
R27	fxd, ww 5 5\% 10w	1	247E	56289	0811-1893	1
R28	fxd, film 3.32k 1\% 1/8W	2	MF4C-1	19701	0757-0433	1
R29	fxd, alloy . 025 ohms	1		28480	5080-1814	1
R30	fxd, film 3.32k 1\% 1/8W		MF4C-1	19701	0757-0433	
R31	var, 2k	1	72XR2K	73138	2100-3273	1
R32	fxd, film 1.33k 1\% 1/8W	1	CEA-993	07716	0757-0317	1
R33	fxd, film 5.62k 1\% 1/8W	1	MF4C-1	19701	0757-0200	1
R34	var, 5 k	1	$3386 \times$-502	32997	2100-3207	1
R35	fxd, comp 1k 5\% 1/4W	1	CB-1025	01121	0683-1025	1
R36	fxd, comp $3305 \% 1 / 4 \mathrm{~W}$	1	CB-3315	01121	0683-3315	1

Table 6-3. Replaceable Parts

REF. DESIG.	DESCRIPTION	TO	MFR. PART NO.	MFR. CODE	HP PART NO.	RS
R37	fxd, comp $105 \% 1 / 4 \mathrm{~W}$		CB-1005	01121	0683-1005	
R38-39	fxd, comp $275 \% 1 / 4 \mathrm{~W}$	2	CB-2705	01121	0683-2705	1
T1	magnetic core, toroid (use with W1,W2)	1	57-1590	78488	9170-0567	1
T2	transformer, power (Model 63005C)	1		28480	63005-80095	1
T2	transformer, power (Model 63315D)	1		28480	63315-80090	1
U1	IC, linear timer	1	NE555T	18324	1826-0119	1
U2	diode, assy.	1		28480	1906-0067	1
U3	IC, linear transistor array	1	CA3046	02735	1821-0001	1
U4	IC, linear voltage regulator	1	723HC	07263	1820-0196	1
VR1	diode, zener $10 \mathrm{~V}, 5 \mathrm{~W}$	1	CD35706	15818	1902-0025	1
VR2	diode, zener 5.9V 2 W	1	CD35641	15818	1902.3110	1
W1, 2	jumpers (windings 2-3, 4-5 of T1)	2		28480	8150-3271	
A3	Dual Linear Regulator Assy. (Model 63315D only)					
C1	fxd, cer . $02 \mu \mathrm{~F} 500 \mathrm{~V}$	2	C023B501J203ZS25	56289	0160-0468	1
C2	fxd, elect $180 \mu \mathrm{~F} 40 \mathrm{~V}$	4	672D	56289	0180-2606	1
C3	fxd, cer $0.1 \mu \mathrm{~F} 50 \mathrm{~V}$	2	5C50B1-CML	56289	0150-0121	1
C4	fxd, mylar $022 \mu \mathrm{~F} 200 \mathrm{~V}$	2	AE17C223KT	06001	0160-0162	1
C5	fxd , elect $2.2 \mu \mathrm{~F} 20 \mathrm{~V}$	2	150D225×0020A2	56289	0180-0155	1
C6, 7	fxd, cer $.01 \mu \mathrm{~F} 100 \mathrm{~V}$	4	TA	91418	0150-0093	1
C8	fxd, elect $180 \mu \mathrm{~F} 40 \mathrm{~V}$		672D	56289	0180-2606	
C9	fxd , cer $0.47 \mu \mathrm{~F} 25 \mathrm{~V}$	2	5C11B7-CML	56289	0160-0174	1
C10	fxd , cer $.02 \mu \mathrm{~F} 500 \mathrm{~V}$		C023B501J203ZS25	56289	0160-0468	
C11	fxd, elect $180 \mu \mathrm{~F} 40 \mathrm{~V}$		672D	56289	0180-2606	
C12	fxd, mylar $022 \mu \mathrm{~F} 200 \mathrm{~V}$		AE17C223KT	06001	0160-0162	
C13, 14	fxd , cer $.01 \mu \mathrm{~F} 100 \mathrm{~V}$		TA	91418	0150-0093	
C15	fxd , elect $2.2 \mu \mathrm{~F} 20 \mathrm{~V}$		150D225X0020A2	56289	0180-0155	
C16	fxd, elect $180 \mu \mathrm{~F} 40 \mathrm{~V}$		672D	56289	0180-2606	
C17	fxd , cer $0.47 \mu \mathrm{~F} 25 \mathrm{~V}$		5C11B7-CML	56289	0160-0174	
C18	fxd, cer . $01 \mu \mathrm{~F} 1 \mathrm{KV}$	1	C023A102J103MS38	56289	0150-0012	1
C19	fxd, cer $0.1 \mu \mathrm{~F} 50 \mathrm{~V}$		5C50B1-CML	56289	0150-0121	
C20, 21	fxd, cer . $05 \mu \mathrm{~F} 400 \mathrm{~V}$	2	33C17A3-CDH	56289	0150-0052	1
CR1, 2	diode, sí. 400 V 750 mA	2	SR1358-9	04713	1901.0028	1
J1	connector, female, 10-cond.	1		28480	1251-3361	1
L1, 2	inductor	2		28480	63315.80091	1
L3, 4	inductor, ferrite bead ($\mathrm{Q} 2, \mathrm{Q} 5$ emitters)	2	56-590-65/4A6	02114	9170-0894	1
L5, 6	inductor, toroidal, 2 -winding	2		28480	5080-1808	1
Q1	power NPN Si	2	see note, page 6-7		1854-0563	2
Q2, 3	SS PNP Si	4	2N2907A	14433	1853-0281	4
Q4	power NPN Si		see note, page 6-7		1854-0563	
Q5	SS PNP Si		2N2907A	14433	1853-0281	
Q6	silicon controlled rectifier	1	2N4441	04713	1884-0082	1
Q7	SS PNP Si		2N2907A	14433	1853-0281	
R1	fxd, comp 6.85\% 1/2W	2	EB-68G5	01121	0698-5525	1
R2, 3	fxd, comp $395 \% 1 / 2 \mathrm{~W}$	2	EB-3905	01121	0686-3905	1
R4	fxd, comp 10K 5\% 1/2W	2	EB-1035	01121	0686-1035	1
R5	fxd, comp $565 \% 1 / 2 \mathrm{~W}$	2	EB-5605	01121	0686-5605	1
R6	fxd, comp 18K 5\% 1/2W	2	EB-1835	01121	0686-1835	1
R7	fxd, ww 0.39 10\% 5W	2		28480	0811-3416	1
R8	fxd, comp $1005 \% 1 / 2 \mathrm{~W}$	2	EB-51G5	01121	0686-1015	1

Table 6-3. Replaceable Parts

REF. DESIG.	DESCRIPTION	T0	MFR. PART NO.	MFR. CODE	HP PART NO.	RS
R9	var. trmr 2 K	3	72XR2K	73138	2100-3273	1
R10	fxd, comp $2.2 \mathrm{~K} 5 \% 1 / 2 \mathrm{~W}$	1	EB-2225	01121	0686-2225	1
R11	var. trmr 2 K		72XR2K	73138	2100-3273	
R12	fxd, film 1K 1\% 1/8W	1	CEA-993	07716	0757-0280	1
R13	fxd, film 2K 1\% 1/8W	1	CEA-993	07716	0757-0283	1
R14	fxd, comp 1K 5\% 1/2W	2	EB-1025	01121	0686-1025	1
R15	fxd, comp $185 \% 1 / 2 \mathrm{~W}$	2	EB-1805	01121	0686-1805	1
R16	fxd, comp $225 \% 1 / 2 W$	3	EB-2205	01121	0686-2205	1
R17	fxd, ww 220 5\% 2W	2	BWH	75042	0811-1763	1
R18	fxd, comp $6.85 \% 1 / 2 \mathrm{~W}$		EB-68G5	01121	0698-5525	
R19	fxd, comp 10K 5\% 1/2W		EB-1035	01121	0686-1035	
R20	fxd, comp $565 \% 1 / 2 \mathrm{~W}$		EB-5605	01121	0686-5605	
R21	fxd, comp 18K 5\% 1/2W		EB-1835	01121	0686-1835	
R22	fxd, ww 0.39 10\% 5W			28480	0811-3416	
R23	var. trmr 2 K		72XR2K	73138	2100-3273	
R24	fxd, comp $1005 \% 1 / 2 \mathrm{~W}$		EB-51G5	01121	0686-1015	
R25	fxd, comp 5.6K 5\% 1/2W	1	EB-5625	01121	0686-5625	1
R26	fxd, comp $2705 \% 1 / 2 \mathrm{~W}$	2	EB-2715	01121	0686-2715	1
R27, 28	fxd, film 3 $3.83 \mathrm{~K} 1 \% 1 / 8 \mathrm{~W}$	2	MF4C-1	19701	0698-3153	1
R29	fxd, comp 3.3K 5\% 1/2W	1	EB-3325	01121	0686-3325	1
R30	fxd, comp $2705 \% 1 / 2 \mathrm{~W}$		EB-2715	01121	0686-2715	
R31	fxd, comp $4705 \% 1 / 2 \mathrm{~W}$	1	EB-4715	01121	0686-4715	1
R32	fxd, comp $1505 \% 1 / 2 \mathrm{~W}$	1	EB-1515	01121	0686-1515	1
R33	fxd, comp 1K 5\% 1/2W		EB-1025	01121	0686-1025	
R34	fxd, comp $3305 \% 1 / 2 \mathrm{~W}$	1	EB-3315	01121	0686-3315	1
R35	fxd, comp 22 5\% 1/2W		EB-2205	01121	0686-2205	
R36	fxd, ww 220 5\% 2W		BWH	75042	0811-1763	
R37	fxd, comp $225 \% 1 / 2 \mathrm{~W}$		EB-2205	01121	0686-2205	
R38	fxd, comp $185 \% 1 / 2 W$		EB-1805	01121	0686-1805	
U1, 2	IC, linear regulator	2	723HC	07263	1820-0196	2
U3, 4	diode, assy.	2		28480	1906-0067	2
VR1, 2	diode, zener 16.2V 2 W	2	CD35767	15818	1902-3214	2
$\begin{aligned} & \text { A4 } \\ & \text { L1 } \end{aligned}$	Chassis-Electrical inductor, 16.7 mH	1		28480	5080-1806	1
TB1 $\times 71$	A1-Mechanical heatsink bracket assembly heatsink bracket ($05, \mathrm{~S} 1$) insulator (bracket mounting) expanding insert, brass, 6-32 IC socket, 16 -pin (U1) heat dissipators, (Q1, 2) transistor insulator, molded (O5) barrier block, 8-term barrier block jumper fuseholder clips terminal tab (A4L1 connections)	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 1 \\ & 2 \\ & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 3 \end{aligned}$	ICN-163-S3W 6025D 6008-32CN	$\begin{aligned} & 28480 \\ & 28480 \\ & 28480 \\ & 06776 \\ & 13103 \\ & 28480 \\ & 28480 \\ & 28480 \\ & 13060 \\ & 28480 \end{aligned}$	$\begin{aligned} & 5020-2512 \\ & 5020-2528 \\ & 0590-0193 \\ & 1200-0507 \\ & 1205-0282 \\ & 0340-0503 \\ & 0360-0680 \\ & 0360-0523 \\ & 2110-0269 \\ & 1251-4180 \end{aligned}$	

Table 6-3. Replaceable Parts

REF. DESIG.	DESCRIPTION	T0	MFR. PART NO.	MFR. CODE	HP PART NO.	RS
TB2	A2-Mechanical heatsink bracket assembly heatsink bracket (U2, Q1) insulator (bracket mtg) expanding insert, brass, 6-32 transistor insulator, molded (U2) transistor insulator, mica (U2) stand off .75' (L1 mount) shoulder washer (L1 mount) felt washer (L1 mount) terminal tab (near R31, 34) barrier block, 5 -term barrier block, jumper	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 1 \\ & 2 \end{aligned}$	734	$\begin{aligned} & 28480 \\ & 28480 \\ & 28480 \\ & 28480 \\ & 08530 \\ & 28480 \\ & 28480 \\ & 28480 \\ & 28480 \\ & 28480 \\ & 28480 \end{aligned}$	$\begin{aligned} & 5020-2513 \\ & 5020-2528 \\ & 0590-0193 \\ & 0340-0503 \\ & 0340-0174 \\ & 0380-0091 \\ & 2190-0360 \\ & 3050-0397 \\ & 1251-4180 \\ & 0360-0681 \\ & 0360-0523 \end{aligned}$	
TB3	A3-Mechanical (Model 63315D only) heat sink bracket ($\mathrm{O} 1, \mathrm{Q4}$) transistor insulator, molded ($\mathrm{Q} 1, \mathrm{Q} 4$) transistor insulator, mica ($\mathrm{Q} 1, \mathrm{Q4}$) heat dissipator (O2, Q5) terminal tab (near R9, 11, 23) barrier block, 6-term barrier block jumper	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 2 \\ & 3 \\ & 1 \\ & 3 \end{aligned}$	$\begin{aligned} & 734 \\ & \text { TXBF-019-025B } \end{aligned}$	$\begin{aligned} & 28480 \\ & 28480 \\ & 08530 \\ & 98978 \\ & 28480 \\ & 28480 \\ & 28480 \end{aligned}$	$\begin{aligned} & 63315-20001 \\ & 0340-0503 \\ & 0340-0174 \\ & 1205-0037 \\ & 1251-4180 \\ & 0360-0590 \\ & 0360-0523 \end{aligned}$	
	Chassis-Mechanical chassis (Model 63005C) chassis (Model 63315D) cover (Model 63005C) cover (Model 63315D) cover label (Model 63005C) cover label (Model 63315D) heatsink (Model 63005C) heatsink (Model 63315D) circuit board spacer rod (Model 63005C) circuit board spacer rod (Model 63315D) heat sink insulator (plastic film) barrier block cover	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 2 \\ & 1 \end{aligned}$		$\begin{aligned} & 28480 \\ & 28480 \\ & 28480 \\ & 28480 \\ & 28480 \\ & 28480 \\ & 28480 \\ & 28480 \\ & \\ & 28480 \\ & 28480 \\ & 28480 \\ & 28480 \end{aligned}$	$\begin{aligned} & 5000-3112 \\ & 5000-3113 \\ & 5000-3114 \\ & 5000-3115 \\ & 7120-4975 \\ & 7120-4974 \\ & 5020-2510 \\ & 5020-2511 \\ & 5020-2515 \\ & 5020-2516 \\ & 5020-2527 \\ & 0360-0551 \end{aligned}$	
	Miscellaneous packing carton carton filler carton filler (Model 63005C only) floater pad	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 4 \end{aligned}$,	$\begin{aligned} & 28480 \\ & 28480 \\ & 28480 \\ & 28480 \end{aligned}$	$\begin{aligned} & 9211-1175 \\ & 9220-1421 \\ & 9220-1422 \\ & 9220 \cdot 1423 \end{aligned}$	

NOTE: Power transistors A3O1 and A3O4 have no direct commercial replacements. For these transistors, the Model 63315D uses RCA 2N3055 transistors that have been selected for the following characteristics:
$\mathrm{h}_{\mathrm{FE}}=35 \mathrm{~min}$. to 90 max. at I_{C} of 4 A
$\mathrm{BV}_{\mathrm{CEO}}=75 \mathrm{~V} \mathrm{~min}$.
$\mathrm{f}_{\mathrm{T}}=500 \mathrm{kHz}$ at ${ }^{\mathrm{I}} \mathrm{C}$ of 40 mA

This section contains the component location and schematic diagrams for power supply Models 63005C and 63315D. The first two sheets of the Figure $7-1$ schematic covers the A1 and A2 boards of both models and sheet 3 covers the A3 board used in the 63315D only. Adjoining each sheet of the schematic is a circuit board component location
diagram which shows the locations of the components on that board and also of the circled test points which appear on the schematic. (The most important test points are also marked directly on the backs of the circuit boards). Major waveforms are also provided as a troubleshooting aid.

GASUREMENT CONDITIONS

these waverorms were measured between the indicated TEST POINTS WITH THE SUPPLY ENERGIZED FROM A IISVAC 60 Hz LINE EXCEPT FOR WAVEFORM " G ". ALL WERE MEASURED WITM ihe output of the supply unloaded the oscilloscope in UT WAS DC-COUPLED all indicated amplitudes are approx MATE

WARNING

SOME CIRCUITS IN THIS INSTRUMENT ARE CONNECTED DIRECTLY TO THE INPUT AC POWER LINE ENERGIZE THE SUPPLY THROUGH AN THE INPUT AC POWER LINE ENERGIZE THE SUPPLY THROUGH AN
ISOLATION TRANSFORMER TO AVOHD SHORTNG AC LINE ENERGIZDD CIR ISOLATION TRANSFORMER TO AVOAD SHORTAG AC LINE ENERGIZDD CIREXERCISE EXTREME CAUTION WHEN WORKING ON EMERGIZED CIRCUITS

SHEHATIC NOTES:

THE MODEL 630056 is COMPLETE ON SHEETS I AND 2 OF THE SCHEMATIC, THE MODEL 633150 is CONERED GY SHEET 1 THRU 3
2 ALL COMPONENTS ARE MOUNTED ON PC. BOARDS EXCEPT FOR ONE CHASSIS MOUNTED INDUCTOR A4L

3 - - DENOTES CONSTANT VOLTAGE FEEDBAGK PATH
4 ALL RESISTORS ARE IN OHMS, 5% I/2W, UNLESS OTHERWISE INOICETED
5 ALL J/EW RESISTORS ARE I\% UNLESS OTHERWISE INOICATED

- ALl CAPACITORS ARE in MICROFARADS
$?$ the souare plated pads on the pe goardos indicate one of the folowing A PIN I OF AN I C OR TRANSFORMER
5 THE POSITIVE END OF A POAARIZEO CAPACITOR
C THE CATHOOE OF A OIOOE OR EMTTTER OF A TRANSISTOR
8 TO OPERATE WITH AN 87 TO 127 VAC INPUT, CONNECT JUMPERS FROM EI TO E2 AND FROM E4 AND E5 ON TEI FOR : 200 TO 250 VAC OFERATION, JHNPER FRON E3 TOE4 DNLY
9 a CONTACT CLOSURE OR TTL CONTRO SIGNAL BET WEEN TERMINALS EG AND THE (-SEN) OR (-) TERMINAL. ON TBZ WHL SHITT DOWN ALL OUTPUTS \{SEE PARA 3-28)

10 THE 5V Winoing of arti consists of the anooe lead of azol looped Thru the magetic core. the other two windings are single-tufn jumpers of instlated wire designateo wi and wi in the parts list

II PIN LOCATIONS FOR SEmICONOUCTORS ARE SHOWN BELOW (TOP VIEWS)

$\frac{\text { (7) } 6 \sqrt{2} \sqrt{4} \sqrt{3} \sqrt{2}] 1}{4203}$
[3] [2] 117
Alu3

T4 [5] 16

Figure 7-1 (Sheet 1). A1 Board

Comporent Locations, A3 Board

Figure 7-1 (Sheet 3). A3 Board

SALES \& SERVICE OFFICES

UNITED STATES

	9606 Aro Dive
	PO O Bx 23333
	San Diego
	TWX 910.335 .2000
	Calculators Only
Medical Only228 W valiey Ave	601 Californa
	San Franciisco 94
om 302 3 202 3 el (415) 989-8470	
Tel (205) 879-2081/2	color
Izona	Englowood 80110
E Magnotas	仿
034	iw
	CONNECTICU
Twx 910.95\%.1331	12necter
24 Easi Aragon Ro	New Haven 065
Tucson 85706	
Tel (602) 889.4661	TWX. 710.465 .2029
-ARKANSAS metical Service Only Lhtle Rock 72205 Fel (501) 664.8773	FLORIDA P0 Box 24210 2805 W Oakland Patk Bive
California ${ }_{\text {1430 East Orangetmotpe Ave }}$	Fl. Lauderdale 33307 510.955-4099
Fullersion	-Jacksonville
	Medica Service
3939 Lankersnim Boulevard North Hollywood 91604 Tef (2131 877-1282 TWX. 310-499.2170	P. 0.80×13910 Orlando 32809 Tif (305) 859.2900
6305 Arizona place Tel (213) 649.2511 TWX-910-328.614	
	2) East Wronn St Sulte 1
-Los Angoles Tel \{ $\{13\} 776$-7500	Pensacola a 32501 Tet 90.4) 434.3081
	GEORGIA 0 Box 28234 450 interstate North Atianta 30328 Ief (404) 434.4000 $\mathrm{~T} W \times 810.766 .4890$
3003 Scoll Boulevard Santa Clara 95050 TWX 910-338.0518	
-Ridgecrest Teil (7141 4 46 -6155	HAWAII 2875 So king Sireel Honotulu 96814 Tol (808) 955.4455
2220 Wall Ave Sacramento 95825 Tel (9161 482-1463	

	iLLINOTS
	5500 Howard Streel Skokle 50076 Tel (312) 677.0400 rwX 910-223.361?
	- St . Joeaph Tel (217) 469-2133
	INDIANA 7301 North Shadeland Ave indianapolis 46250 Yel (317) 842.1000 TWX 810-260.1796
	IOWA $1902810 a d w a y$ lowa City 52240 Yel (319) 338.9466 Nignt (319) 336.9467
	- KANSAS Derby Te: (316) 287.3655
	LOUISANA PO BOX 840 3239 Willams Boulevard Kenner 70062 Te! (504) $721 \cdot 6201$「WX 810.955.5524
	KENTUCKy Medical'Carculator Only 8003 Theutwood Cout Loulsvilie 40231
	MARYLAND 6707 Whitestone Road Baltimore 21207 Tel (301) 944.5400 TWX 710-862-9157
	4 Choke Cnerry Road Rockville 20850 Tel (301) 948.6370 IWX $710-828.9685$ 710-828-0487
	PO Box 1648 2 Choke Cherry Road Rockville 20850 Teif (301) 948-6370

330 Progress 80	P0 80x 27409
Dayton 45849	6300 Wesipaik Dive
Tel (1513) 859.8202	Sulle 100
TWX 810.459-1925	Houston 77027
1049 Kingsmill Parkway	Tel 17131781.6000 TWX 910.881 .2645
Tel (614) 436.1041	205 Bilty Milchell Road San Antonio 78226
OKLAHOMA PO Box 32008	
Oklahome City 73132	UTAH
Tel (405) $721-0200$	2890 Soult Masin Street
TWX 910.830.6862	Salt Lake City 84115
OREGON 17890 SW Boones Ferry Road	Iel (801) 487.0715 TWX 910925.5681
Tualatin 97062	VIRGINIA
Tei (503) 620-3350	Merical Oniy
TWx 910-467.8714	FO Box 12778
PENnSYLVANIA	No 7 Koger Exec Center
111 Zela Dive	
Pittsburgh 15238	Tel (804) 497-9026i7
Night 782.040:	F 0 B0x 9854
TWx 710.795.3124	2914 Hungary Springs Fioad
10218 ith Avenue	Richmond 23228
King of Prussia industrial Pank	Tel (804) 285.3431
King of Prussia 19406	1wx 7 ¢956.015
Tel ${ }^{\text {T }}$ (215) 2655.7000	WASHINGTON
TWX 510.860 .2670	Bellelieto Oftice Pk
SOUTH CAROLINA	1203.114 th SE
6941.0 N Premhalm Road	Beilevue 98604,
Columbla 29260	Tet (206) 454.3971
Tel (803) $782 \cdot 6493$	TWX 910.443.2446
TENNESSEE	-west virginia
- Memphis	Medicai/Analy ical Only
Medical Service ondy	Charioston
Tel (901) 274.7472	Tel (304) 345-1640
- Nashillie	WISCONSIN
Medical Service prity	9431 W Be
T\&\%) (615) 244.5448	Suite 117
TEXAS	Miwaukee 53227
PO Box 1270	Tel (414) 541.0550
201 E Arapaho Rd	FOR U.S. AREAS NOT LISTED
Richardson 75080	Contact the regonat oltice
Tef (214) 231.6101	nearest you Alianta Georgia
TWX 910.867.4723	Noth Hollywood Caliorna
	Rockulle (4 Choke Cherry RoI
	Maryland Skoke lilinois
	There complete andresses
	are listed above
	-Service Only

CANADA
 17748 KIngsway Ave
Edmonton ISG 0×5 Tel (403) $452 \cdot 3670$
TWX $610-831 \cdot 2431$
Howleft Packara (Canada) Lto
Calgary ${ }^{\text {T2G }} 121$
Tel
(403) 287.1672
 ewlett. Packaro (Canada) encouver V6A 3 R2 $\mathrm{el}(604)$ 254. 6531
WX 610.922 .5059

MANITOEA Hewietl-Packard (Canada) LIO 513 Century SI St James Winnipeg R3H OL8 Te. (204) 786.7581 IWX 610.671.353i

NOVA SCOTIA
Hewlett-Packard (Ganaca) 1 ta
Hewlen-Packara
800 Wridmell Rodd
Dat
800 Mindmell ROd
Delt (902) 469.7820
Tel

ONTARIO

Hewlen-Packard Canadal Lid
Otaw K2C Opg
Tel 1613225.6530
Tw 610.562 .8968
Hewlell-Packard (Canada) Lid
Missiesamuge L4V 11.9
Tet 1416.678 .9430

OUEBEC

Mewtert Packard (Camada) 1 d
275 Hymus eivd
Pointo Clalre H98 197
Te! 1514) 697.4232
$T W \times 610-42.3022$
$T 1 \times 05-821521 \mathrm{HPCL}$

Hewleth-Packard (Canaga) Lid 2376 Galvany Sitreat Tel (418) 688.8710
for Canadian areas not listedContact Hewlet. Packard (Canada)

ARGENTINA	Hewtert. Packard 00 Brasa	colomela
Hewlett-Packäd Arganina	IEC Ida	lastrumentacion
SACEI	Praca Domi Feiciano 78.8	Henrix A Langebzek \& Ker S
Lavalle 1571.3. P150	arcar (Sala 806/8)	Carsera 7 No 48.59
Buenos Alios	9000-Porto Alegre-RS	Apartado Aereo 6287
Tel 35-0436. 35.0627 35.034	Te, 25-84.70.000 105124	Bogota, it F
Teler 012.1009	Cabie HEWPACK Porto alegre	Tet 45.78.05 45-55.46
Cadie hewpack arg	Hewlett Packare On Brasil	Cabie amais bogota
BOLIVIA	JEC Lida	leiex adtiolinsico
Stambuk 8 Mark lignival Lida	Rua Seruelia Cameos. 534°	costa rica
Av Mansca! Santa Cruz 1342	andar Copacabana	Crentidica Costarsicense SA.
La paz	2000 - 1 lo de Jangiro-GB	AD2ta00 10759
Tef 405265316352421	lel 257.80-94-000 1021) Telex 210079 HEWPACK	
Telex 3560014	Tenex 210079 HEWPACK	Tel 21.86 .13
Cabse gUkMar	Rio de Janeiro	Cabie galgur san jose
brazil.	CHILE	Guatemala
Hewleti-Packard Do Brash	Cateson y Metcalle Lroa	
Rua flel Canera : 152 -Beia Visla	Calie Lita 81 Otrinas	
01307 Sao Paulo SP	Casila 2118	Guatemato
Tet $298871.31 .282 \cdot 81-20$	${ }_{\text {Sontrago }}$	Tel 6362784786
$\mathrm{Tefex}^{287.61 .93} 309151.23$	Cable Calmey	Tetex tigz MELIROGU
Terex Casle Hew Hewack		

peru Compania Electo Medica 5 A Ave Ennque Canaval 312 San Isidro Castila 1030 Limg Tef 22-3900 Cable ELMED LMA
PUERTO RICO San Juan Electronics inc $\rho 080 \times 5 i 67$ Pance de leon :54 Pra 3.PIA de lieria San Juan 00906 Fei 1809) $725 \cdot 3342722.3342$ Cadie satronics San Juan
URUGUAY Pablo Fercande SA Comercal e Incustial Avenoda Haila 2877 Casilla de Correa 370 Montevideo fet 40-3:02

Hewletr packard ae vengruela
Apartado 50933
Eficicic Segre
tercera Tansversai
Los Ruices Norta
Los Rulces No
Caracas 107
tot $35-00.19$
teet $35-00.91$
feex 21 He HEWPACK
reex 21 I46 HEWPACK
Cable KEWPACK CJricas
paraguay
Medicos adtas y Equipos
Division Aparatos y Equmos
investigacion
PO 80×676
Chate 482 Edructe Victoras
Asunction
TE! 4.5069
4
Cable gamel

FOR AREAS N
Hewill: Packan
Intel-Amencicas
3200 Hitlvew Ave
Palo Alto Cabloing 94304

Cabte HEWPACK Pato Allo
Yelex 0348500

