Errata

Title \& Document Type: 10811A/B Quartz Crystal Oscillator Operating \& Service Manual (V2)
 Manual Part Number: 10811-90002
 Serial Prefixes:
 Revision Date:
 2028
 August 1980

HP References in this Manual
This manual may contain references to HP or Hewlett-Packard. Please note that Hewlett-Packard's former test and measurement, semiconductor products and chemical analysis businesses are now part of Agilent Technologies.

Changes to this Manual

No changes have been made to this manual, with the exception of correcting the odd spelling and grammatical errors. In some places original photographs may be replaced or augmented with modern digital photographs.

All pages are scan at 600 DPI and in some cases (schematics) scaled down to fit $81 / 2 \times 11$ page. If you wish to print on 11×17 or larger just print the page and scale to fit.

About this Manual

This manual is reproduced from scans of an original document, which is then converted using my own custom designed OCR software, and then edited in Microsoff ${ }^{\circledR}$ Word 2003. This means that what you see here is not a scan of a scan/copy with text overlays. OCR errors may exist and as such the user of this document should take care and use common sense when referencing this documentation.

Copyright Notice
This documentation is © Copyright 1980 Hewlett Packard and © Copyright 2007, Jack Hudler, hpdocs@hudler.org.

Permission to use and redistribute this documentation for non-commercial and internal corporate purposes is hereby granted, free of charge.
Any redistribution of this documentation or its derivates must include this copyright notice.

You may not sell this documentation or its derivations without written consent. You may modify this documentation as necessary, but you may not sell derivative works based on it.
You may include this documentation with the equipment/hardware on which it is used for the purposes of selling the equipment/hardware. If you advertise that a copy of this documentation is included in the sale, you must state that is for "Free".

Meaning if you want to gratuitously toss in a copy of the manual on an eBay sale, it's ok with me as long as you state it's for free. No you can't sell a digital archive of manuals and say it includes a free copy of this documentation. You must give it away with equipment.
I think you get the spirit of the copyright; it takes a lot of hours to scan and replicate a manual. I just want this used in the spirit in which is it given.
Agilent if you have questions or wish to include this in your archive, please email me.

Page Intentionally Left Blank

OPERATING \& SERVICE MANUAL

10811A/B Quartz Crystal Oscillator Crystal Oscillator

General Information Installation
Operation
Performance Tests
Adjustments
Replaceable Parts
Manual Changes
Service

10811A/B QUARTZ CRYSTAL OSCILLATOR

OPERATING AND SERVICE MANUAL

SERIAL PREFIX: 2028

This manual applies to Hewlett-Packard Model 10811A/B Oscillators with serial prefix number 2028.

Also covers oscillators with HP Part Numbers 1081160101 and 10811-60105.

OTHER SERIAL PREFIXES

For serial prefixes above 2028, a "Manual Change" sheet is included with this manual.

First Edition - August 1980
©Copyright 1980
by
HEWLETT-PACKARD COMPANY
5301 Stevens Creek Blvd.
Santa Clara, CA 95050
All Rights Reserved

TABLE OF CONTENTS

I. GENERAL INFORMATION 2
1-1. INTRODUCTION 2
1-4. SPECIFICATIONS 2
1-6. SAFETY CONSIDERATIONS 2
1-8. INSTRUMENTS COVERED BY THIS MANUAL 2
1-13. DESCRIPTION 4
1-19. HP Part Number 10811-60101 and 10811-60105 4
1-22. RECOMMENDED TEST EQUIPMENT 4
II. INSTALLATION 6
2-1. INTRODUCTION 6
2-3. INITIAL INSPECTION 6
2-5. PREPARATION FOR USE 6
2-6. Power Requirements 6
2-10. Single Source Regulated Power Supply 7
2-12. ELECTRONIC FREQUENCY CONTROL (EFC) 7
2-16. $\quad 10 \mathrm{MHz}$ FREQUENCY OUTPUT SIGNAL 7
2-18. OVEN MONITOR OUTPUT 8
2-20. MATING CONNECTORS AND MOUNTING 8
2-23. INSTALLATION INSTRUCTIONS 9
2-25. INSTALLATION INSTRUCTIONS (HP INSTRUMENT) 10
2-28. OPERATING ENVIRONMENT 10
2-34. STORAGE AND SHIPMENT 11
2-35. Environment 11
2-37. PACKAGING 11
2-38. Original Packaging 11
2-40 Other Packaging 11
III. OPERATION 12
3-1. INTRODUCTION 12
3-3. BASIC POWER-UP DESCRIPTION 12
3-7. FREQUENCY ADJUSTMENT 12
3-9. FREQUENCY ADJUSTMENT PROCEDURE 12
3-10. ACCURACY VS ADJUSTMENT INTERVAL 13
IV. OPERATIONAL VERIFICATION 16
4-1. INTRODUCTION 16
4-3. OPERATIONAL VERIFICATION 16
4-5. EQUIPMENT REQUIRED 16
4-7. TEST RECORD 16
4-13. OPTIONAL CONTROLLERS AND COUNTERS 21
4-14. Optional Controllers 21
4-16. Optional Counters 22
V. ADJUSTMENTS 25
5-1. INTRODUCTION 25
5-3. EQUIPMENT REQUIRED 25
5-5. FACTORY SELECTED COMPONENTS 25
5-7. ADJUSTMENT LOCATION 25
5-9. SAFETY CONSIDERATIONS 25
5-11. OSCILLATOR FREQUENCY ADJUSTMENT 25
Offset Calculation: 26
5-13
OUTPUT AMPLITUDE ADJUSTMENT 27
VI. REPLACEABLE PARTS 29
6-1. INTRODUCTION 29
6-3. ORDERING INFORMATION 29
6-5. HP PART NUMBER ORGANIZATION 29
6-7. Component Parts and Materials 30
6-10. GENERAL USAGE PARTS 31
6-12. Specific Instrument Parts 31
6-14. Factory Selected Parts 31
6-20. REPLACEABLE PARTS LIST LAYOUT 31
VII. MANUAL CHANGES 37
7-1. INTRODUCTION 37
7-3. MANUAL CHANGES 37
7-5. NEWER INSTRUMENTS 37
VIII. SERVICE 39
8-1. INTRODUCTION 39
8-3. SCHEMATIC DIAGRAM SYMBOLS AND REFERENCE DESIGNATORS 39
8-5. REFERENCE DESIGNATORS 39
8-6. Theory of Operation 39
8-8. OVERALL BLOCK DIAGRAM THEORY 39
8-13. MAIN OSCILLATOR THEORY OF OPERATION 42
8-18. ELECTRONIC FREQUENCY CONTROL (EFC) 43
8-20. AUTOMATIC GAIN CONTROL (AGC) 44
8-23. RF OUTPUT IMPEDANCE MATCHING AND OUTPUT BUFFER. 45
8-25. VOLT AGE REFERENCES (5.7V AND 6.4V) 45
8-27. OVEN HEATER AND CONTROLLER THEORY 46
8-35. PRECISION VOLTAGE REFERENCE 47
8-37. OVEN CONTROLLER TURN-ON CURRENT LIMITING 47
8-39. HEATER TRANSISTOR BALANCE 48
8-41. REPAIR AND TROUBLESHOOTING 49
8-42. Inspection 49
8-44. REPAIR. 49
8-45. Printed Circuit Component Replacement 49
8-47. Replacing Integrated Circuits 49
8-50. TROUBLESHOOTING 50
8-57. DISASSEMBLY FOR TROUBLESHOOTING AND REPAIR 51
8-61. SPECIAL TEST CONNECTOR FOR 10811A 52
8-65. SPECIAL CABLE FOR THE 10811B 53
8-67. SPECIAL PARTS REPLACEMENT CONSIDERATIONS 53
8-69. OVEN CONTROLLER TROUBLESHOOTING 55
8-70. General 55
8-74. Normal Operation 56
8-76. TROUBLESHOOTING 56
8-80. Troubleshooting Cautions. 56
8-82. Flex Damage 56
8-84. OSCILLATOR TROUBLESHOOTING 58
8-86. NORMAL OPERATION 58
8-88. OSCILLATOR TROUBLESHOOTING TECHNIQUES 58
8-92. TROUBLESHOOTING INFORMATION. 59

LIST OF TABLES

Table 1-1. Specifications Table 3
Table 1-2. Recommended Test Equipment. 5
Table 2-1. Input Voltages/Voltage Coefficients 6
Table 3-1. Accuracy vs Adjustment 14
Table 4-1. Operational Verification Descriptions 17
Table 4-2. Operation Verification Procedure 18
Table 4-3. 5316A Program Codes 22
Table 4-4. Operational Verification Record 24
Table 6-1. Replaceable Parts 32
Table 6-1. Replaceable Parts (Continued) 34
Table 6-2. Manufacturers Code List 35
Table 8-1. Temperature Set Resistor List. 54
Table 8-2. Oven Controller Troubleshooting Tree 57
Table 8-3. Oven Circuit Voltages 61
Table 8-4. Oscillator Section Normal Voltages (see Notes 1, 2, 3) 61
LIST OF FIGURES
Figure 1-1. 10811A and 108118 Oscillators 1
Figure 2-1. Single Source Regulated Power Supply 7
Figure 2-3. 10811A Supply and Output Connections 8
Figure 2-4. 10811B Supply and Output Connections 9
Figure 2-5. Mechanical Mounting Dimensions 10
Figure 3-1. Oscillator Adjustment Set-Up 13
Figure 4-1. BASIC Program 21
Figure 4-2. HPL Program 21
Figure 5-1. Oscillator Adjustment Setup 26
Figure 5-2. 10811A Amplitude Adjustment Set-up 27
Figure 5-3. 108118 Amplitude Adj Set-up 28
Figure 8-1. Schematic Diagram Notes 40
Figure 8-2. 10811A/B Overall Block Diagram 41
Figure 8-3A. Basic Colpitts- Type Oscillator. 42
Figure 8-3B. Main Oscillator Schematic Design 42
Figure 8-4. Mode Suppression 43
Figure 8-5. Frequency Tuning Circuit 43
Figure 8-6. EFC 44
Figure 8-7. Automatic Gain Control (AGC) 44
Figure 8-8. Output Amplifiers 45
Figure 8-9. Voltage References 46
Figure 8-10. Oven Control Circuits 47
Figure 8-11. Turn-on Current Limit Circuit 48
Figure 8-12. Heater Transistor Balance Circuit. 48
Figure 8-13. 10811A/B Special Test Connector 52
Figure 8-14. Oven Controller Block Diagram 55
Figure 8-15. Oven Controller Schematic Diagram 64

PREFACE

This manual is designed to present the information required by the user to effectively operate and maintain the 10811A/B Quartz Crystal Oscillator.

In limiting the depth of coverage of this manual, a certain amount of previous knowledge on the part of the reader must be assumed. A variety of additional related documentation is available. These materials address the specific areas of interest, and should be used whenever necessary to supplement this manual. Users unfamiliar with precision time keeping and frequency standards, for example, may wish to refer to the 10811A/B Documentation Map for further information.

The following references can provide additional information about the theory and use of precision frequency sources and quartz oscillators.

1. Application Note 52-1 Hewlett-Packard Fundamentals of Time and Frequency Standards.
2. Application Note 52-2 Hewlett-Packard Time Keeping and Frequency Calibration.
3. Application Note 200-2 Hewlett-Packard Fundamentals of Quartz Oscillators.
4. U.S. National Bureau of Standards, Monograph 140, Time and Frequency Theory and Fundamentals available from:

Superintendent of Documents
U.S. Government Printing Office

Washington, D.C. 20402
5. In 1990 the NIST replaced the Monograph 140 document with this interim collection of documents NIST/TN1-339 or visit time NIST Time and Frequency Publication Database.

The 10811A/B Quartz Crystal Oscillator has two manuals available. The Operating Instruction Manual is supplied with the oscillator and is intended for the user that desires only operating information. The Operating and Service Manual is a complete document containing both operating and servicing information. The Operating and Service Manual (This manual) is not supplied with the oscillator, but is available by ordering HP Part No. 10811-90002 (of course they won't sell you one). The Operating Instructions Manual is a duplication of Sections I, II, and III of the Operating and Service Manual. Any references in the Operating Instructions Manual to Sections IV, V, VI, VII, and VIII should be considered references to the Operating and Service Manual.

10811A/B Documentation Map

Figure 1-1. 10811A and 108118 Oscillators

GENERAL INFORMATION

1-1. INTRODUCTION

1-2. This manual provides information pertaining to the installation, operation, testing, adjustment, and maintenance of the HP Model 10811A/B Quartz Crystal Oscillator. Figure 1-1 shows the 10811A and 10811B.

1-3. This manual is divided into eight sections, each covering a particular topic. The topics by section number are shown below. Sections I, II, III appear in the Operating Instructions Manual. Sections I through VIII appear in the Operating and Service Manual.

Section	Topic
I	General Information
II	Installation
III	Operation
IV	Performance Tests
V	Adjustments
VI	Replaceable Parts
VII	Manual Changes
VIII	Service

1-4. SPECIFICATIONS

1-5. Specifications are listed in Table 1-1. These specifications are the performance standards or limits against which the oscillator may be tested.

1-6. SAFETY CONSIDERATIONS

1-7. The Model 10811A/B Component Oscillator is a Safety Class III product and must be powered from a source which is electrically isolated from the mains (line circuits). Safety information pertinent to the operation and servicing of this instrument is included in the appropriate sections of this manual.

1-8. INSTRUMENTS COVERED BY THIS MANUAL

1-9. Attached to the instrument is a serial number plate. The serial number is in the form 0000A00000. It is in two parts; the first four digits and the letter are the serial prefix and the last five are the suffix. The prefix is the same for all identical instruments; it changes only when a change is made to the instrument. The suffix, however, is assigned sequentially and is different for each instrument. The contents of this manual apply to instruments with the serial number prefix(es) listed under Serial Prefix on the title page.

1-10. An instrument manufactured after the printing of this manual may have a serial number prefix that is not listed on the title page. This unlisted serial number prefix indicates the instrument is different than those described in this manual. The manual for this new instrument is accompanied by a yellow Manual Changes supplement. This supplement contains "change information" that explains how to adapt the manual to the newer instrument.

1-11. In addition to change information, the supplement may contain information for correcting errors in the manual. To keep this manual as current and accurate as possible, Hewlett Packard recommends that you periodically request the latest Manual Changes supplement. The supplement for this manual is identified with the manual print date and part number, both of which appear on the manual title page. Complimentary copies of the supplement are available from Hewlett-Packard.

Averaging Time $\tau \mid$ seconds \mid	Stability $\sigma_{\mathbf{y}}(\boldsymbol{\tau})$
10^{-3}	1.5×10^{-10}
10^{-2}	1.5×10^{-11}
10^{-1}	5×10^{-12}
10^{0}	5×10^{-12}
10^{1}	5×10^{-12}
10^{2}	1×10^{-11}

FREQUENCY DOMAIN STABILITY

Offset from Signal $f[\mathrm{~Hz}]$	Phase Noise Ratio $\mathcal{L}(\mathbf{f})[\mathrm{dBc}]$
10^{0}	-90
10^{1}	-120
10^{2}	-140
10^{3}	-157
10^{4}	-160

Table 1-1. Specifications Table

Frequency Stability: (See Definition of Terms)

Long Term (Aging Rate): $<5 \times 10^{-10}$ /day after 24 -hour warm-up. See Note 1. $<1 \times 10^{-7}$ /year for continuous operation. Short Term: Refer to tables and figures above.

Environmental Sensitivity:

Temperature: $<4.5 \times 10-9$ over a $-55^{\circ} \mathrm{C}$ to $71^{\circ} \mathrm{C}$ range. $<2.5 \times 10-{ }^{-}$over a $\mathrm{O}^{\circ} \mathrm{C}$ to $71^{\circ} \mathrm{C}$ range.
Operating:- $55^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$.
Storage: $-55^{\circ} \mathrm{C}$ to $\mathrm{X} 85^{\circ} \mathrm{C}$.
Load: $<5 \times 10^{-10}$ for a $\pm 10 \%$ change in 50 ohm load. $<5 \times 10^{-10}$ for a $\pm 25 \%$ change in $1 \mathrm{~K} \Omega$ load.

Power Supplies:

Oscillator Supply: <2 $\times 10^{-10}$ for 1% change. $<100 \mu \mathrm{v}$ ripple and noise required.
Oven Supply: $<1 \times 10-{ }^{10}$ for 10% change.
$<30 \mathrm{mv}$ ripple and noise required.
Gravitational Field: $<4 \times 10^{-9}$ for 2 g static shift (turn-over).
Magnetic Field: <-90 dBc sidebands due to 0.1 millitesla (1 Gauss) rms at 100 Hz .
Humidity (typical): 1×10^{-9} for $95 \% \mathrm{RH}$ at $40^{\circ} \mathrm{C}$.
Shock (survival): $30 \mathrm{~g}, 11 \mathrm{~ms}, 1 / 2$ sinewave. Altitude (typical): $2 \times 10-9$ for 0 to $50,000 \mathrm{ft}$.

Warmup

10 min. after turn-on within $5 \times 10-9$ of final value, at $25^{\circ} \mathrm{C}$ and 20 Vdc . See Notes 1 \& 2.

Adjustment

Coarse Frequency Range: $> \pm 1 \times 10^{-6}(\pm$ 10 Hz) with 18 turn control. Elec. Frequency Control (EFC): $\geq 1 \times 10^{-7}$ $(1 \mathrm{~Hz})$ total, control range -5 Vdc to +5 Vdc . *Specifications describe the instrument's warranted performance. Supplemental characteristics are intended to provide information useful in applying the instrument by giving TYPICAL or NOMINAL, but non warranted performance parameters. Definition of terms is provided at the end of the specification section.

Weight: 0.31 kg (11 oz.)

Definition of Terms

Long-Term Frequency Stability is defined as the absolute value (magnitude) of the fractional frequency change with time. An observation time sufficiently long to reduce the effects of random noise to an insignificant value is implied. Frequency changes due to environmental effects must be considered separately.
Time Domain Stability $\sigma_{\gamma}(\tau)$ (Allan deviation) is defined as the two-sample deviation of fractional frequency fluctuations due to random noise in the oscillator. The measurement bandwidth is 100 kHz .
Frequency Domain Stability is defined as the single sideband phase noise-tosignal ratio per Hertz of bandwidth (a power spectral density). This ratio is analogous to a spectrum analyzer display of the carrier versus either phase modulation sideband.
See "NBS-Monograph 140" for measurement details.

Notes:

1. For oscillator off-time less than 24 hours.
2. Final value is defined as frequency 24 hours after turn-on.

Accessories Available:

Service Manual: HP 10811-90002: (not supplied). This Manual.

Size:

$72 \mathrm{~mm} \times 52 \mathrm{~mm} \times 62 \mathrm{~mm}$, (see Figure 1). (2-13/16" X 2-1/32" X 2-7/16", 14 cu. in.).
-

Output

Frequency: 10 MHz
Voltage: $0.55 \pm 0.05 \mathrm{~V}$ rms into 50 ohm $1 \mathrm{~V} \mathrm{rms} \pm 20 \%$, into 1 K ohm.
Harmonic Distortion: Down more than 25 dB from output.
Spurious Phase Modulation: Down more than 100 dB from output (discrete sidebands 10 Hz to 25 kHz).

Power Requirements

Oscillator Circuit: 11.0 to 13.5 Vdc. 30 mA typical. 40 mA max.
Oven Circuit: 20 to 30 V dc ; turn on load is 42 ohm minimum. Steady-state power drops to a typical value of 2.0 W at $25^{\circ} \mathrm{C}$ in still air with 20 Vdc applied.

Connectors

10811A: Mates with CINCH 50-30S-30
(HP 1251-0160) , Vishay/Dale (HP 1251-
2035) EB81-BN15TGW, EDAC 305-030-

500-202 or 357-030-520-202 or equivalent (not supplied).
10811B: Solder terminals and SMB Snapon connectors. Mates with Cablewave Systems, Inc. \#700156 or equivalent (not supplied).

1-12. For information concerning a serial prefix that is not listed on the title page or in the Manual Changes supplement, contact your nearest Hewlett-Packard office.

1-13. DESCRIPTION

1-14. The HP Model 10811A/B Quartz Crystal Oscillator is an extremely stable, compact, low power source of 10 MHz . The 10811A/B has a very fast warm-up time, exhibits excellent temperature characteristics and has low phase noise and power consumption.

1-15. The $10811 \mathrm{~A} / \mathrm{B}$ has the ability to be adjusted over a range of $20 \mathrm{~Hz}\left(2 \times 10^{-6}\right)$, yet the control is sensitive enough to allow adjustment to better than $0.1 \mathrm{~Hz}\left(1 \times 10^{-8}\right)$. The frequency can also be controlled electronically over a $1 \mathrm{~Hz}\left(1 \times 10^{-7}\right)$ range with an externally applied voltage to the EFC.

1-16 The 10811A/B is field repairable, thus allowing the oscillator to be quickly placed back into service.

1-17. The 10811A/B requires two external power supplies. The power supply requirements are listed in Section II.

1-18. The 10811A and 10811B are identical, except for the connections. The 10811A uses a standard 15 pin printed circuit connector. The 10811B uses filtered-feedthrough terminals for power and oven monitor, and SMB subminiature rf snap-on connections for the 10 MHz output and EFC.

1-19. HP Part Number 10811-60101 and 10811-60105

1-20. The 10811-60101 is a 10811A in which phase noise, magnetic field and 2 g turn-over are not specified. The 10811-60101 is physically identical to the 10811A.

1-21. The 10811-60105 is a 10811-60101 with specifications of $<1.5 \times 10^{-9}$ for aging and $<1 \times 10^{-11}$ for short-term stability for a 1 -second averaging time. The 10811-60105 is physically identical to the 10811A.

1-22. RECOMMENDED TEST EQUIPMENT

1-23. The test equipment required to maintain the Model 10811A/B is listed in Table 1-2. Other equipment may be substituted if it meets or exceeds the critical specifications listed in the table.

Table 1-2. Recommended Test Equipment

INSTRUMENT	REQUIRED CHARACTERISTICS	MODEL NO.
1. Frequency Analyzer*	Phase noise measurement at 10 MHz 5390 cannot measure 10811 specs above 10 Hz	5390A*
2. Frequency Counter**	10 MHz range, HP-IB programmable, 2 ns resolution	5345A**
3. Computing Controller**	HP-IB compatible	9835A or 9825A **
4. Frequency Reference	Short term stability $\leq 5 \times 10^{-12} /$ second Long term stability $<5 \times 10^{-10}$ day	5065A, 5061A (Option 004), or $105 A^{\prime} \mathrm{B}^{* *}$
5. Sampling Voltmeter	$\pm 3 \%$ accuracy at 10 MHz	3406A
6. General Purpose Oscilloscope	Bandwidth $\geq 10 \mathrm{MHz}$	1740A
7. Frequency Doubler	Operates at 10 MHz	10515A
8. Mixer Amplifier**	10 MHz Mixer/50 dB gain	K79-59992A**
9. Spectrum Analyzer	$10 \mathrm{MHz} / 70 \mathrm{~dB}$ range	8552B/8553B
10. Power Supply	480 mA @ 20V (2 required)	6215A
11. DC Voltmeter	Any HP type digital or analog	
12. Torque Screwdriver	2-30 inch-lb. (0.2 to 3.4 newton meters)	8730-0012
13. Feedthru Termination	50 ohms	11046B
14. BNC to Miniature Coax Adapter 15. Test Connector	Use for 10811B Only For testing 1 0811A	05060-6116 See para. 8-61
15. Test Connector	For testing 1 0811A	See para. 8-61

*Not needed if items 2, 3, 4 are available.
${ }^{* *}$ Not needed if HP 5390A Frequency Stability Analyzer is available.
${ }^{* * *}$ |f a $105 \mathrm{~A} / \mathrm{B}$ is used, its performance must be verified.

SECTION II

INSTALLATION

2-1. INTRODUCTION

2-2. This section contains installation instructions for the 10811A/B Quartz Crystal Oscillator. Also included is information about initial inspection and damage claims, preparation for using the oscillator, and packaging, storage and shipment.

2-3. INITIAL INSPECTION

2-4. Inspect the shipping container for damage. If the shipping container or cushioning material is damaged, it should be kept until the contents of the shipment have been checked for completeness and the oscillator has been checked mechanically and electrically. The contents of the shipment should be as shown in Figure 1-1; procedures for checking electrical performance are given in Section IV. If the contents are incomplete or if there is mechanical damage or defect, or if the oscillator does not pass the Performance Tests, notify the nearest Hewlett-Packard office. If the shipping container is damaged, or the cushioning material shows signs of stress, notify the carrier as well as the Hewlett-Packard office. Keep the shipping materials for the carrier's inspection. The HP office will arrange for repair or replacement at HP option without waiting for the claim settlement.

2-5. PREPARATION FOR USE

2-6. Power Requirements

2-7. The 10811A/B requires two power sources. One supplies power to the oscillator circuitry and the other supplies power to the oven heaters. Table 2-1 lists the required supply voltages and the effect of a change in these voltages on the output frequency.

Table 2-1. Input Voltages/Voltage Coefficients

Input Circuit	Required Voltage	Required Current/Power	Voltage Coefficients	
			Voltage Change	Frequency Change
Oscillator/ Amplifier	$11.0-13.5 \mathrm{~V} \mathrm{dc}$ $\text { Noise }<100 \mu \mathrm{~V}$	30 mA typical, 40 mA max.	1\%	$<2 \times 10^{-10}$
Oven Controller	$20-30 \mathrm{~V}$ dc	Turn on load is 43 ohms minimum Power drops to steady state value ($\approx 2 \mathrm{~W}$) within 10 min . at $25^{\circ} \mathrm{C}$ with 20 V dc applied.	10\%	$<1 \times 10^{-10}$

2-8. Both the 10811A and 10811B have separate ground return paths for each section (oscillator and oven circuits). Both grounds may be tied together or operated at any reasonable difference in potential. Note the oscillator supply ground and 10 MHz output have a common ground return. The outer housing for both oscillators is tied to this ground point. The 10811B filtered feedthrough grounds are also tied to the outer housing.

2-9. In order to maintain the high spectral purity of the $10811 \mathrm{~A} / \mathrm{B}$ output signal, the supply voltages must be relatively clean. The supply ripple and noise on the 12 -volt line (oscillator supply) must be kept below $100 \mu \mathrm{~V}$ rms and the 20 -volt line (oven supply) ripple and noise must be kept below 30 mV rms with both measured in the 10 Hz to 25 kHz range. A 1% change of the 12 -volt supply (oscillator) will cause $\leq 2 \times 10^{-10}$ change in output frequency. A 10% change in the 20 -volt line (oven) will cause $\mathrm{a} \leq 1 \times 10^{-10}$ change in output frequency.

2-10. Single Source Regulated Power Supply

2-11. A single source of +20 to +30 V dc with 10% regulation may be used to power both the oven and oscillator amplifier circuits if a simple IC regulator is used. A suggested circuit is shown in Figure 2-1. The resistor and capacitor connected to terminals 3 and 4 of the IC minimize ripple and noise in the regulated output.

723 VOLTAGE REGULATOR - HP PART NUMBER 1826-0010

Figure 2-1. Single Source Regulated Power Supply

2-12. ELECTRONIC FREQUENCY CONTROL (EFC)

2-13. The EFC allows the oscillator to be tuned over a 1 Hz range ($1 \times 10-7$) by applying -5 to +5 volts to the EFC input. As the EFC voltage goes positive the output frequency will go lower. Conversely, as the EFC voltage goes negative, the output frequency will go higher.

2-14. Since noise on the EFC line affects the oscillator's stability (noise appears as FM on the output), care must be taken to ensure that a relatively noise free EFC voltage source is used. The noise level must be kept below $100 \mu \mathrm{~V}$ to maintain good stability performance.

2-15. The EFC input should be connected to oscillator circuit ground if not used. A shorting plug (12500911) is supplied with 10811B for this purpose. The EFC input on the 10811A should be grounded at the printed circuit connector by wiring pins 5 and 6 together.

2-16. 10 MHz FREQUENCY OUTPUT SIGNAL

2-17. The 10 MHz output is ac coupled from a source impedance of approximately 50 ohms. The signal level is $.55 \pm .05$ into a 50 ohms load or 1 -volt $\pm 20 \%$ into a 1 K ohm load.

2-18. OVEN MONITOR OUTPUT

2-19. The OVEN MONITOR OUTPUT is an indicator of oven warm-up. At initial turn-on (warmup) the oven monitor will go to approximately 1.5 volts BELOW the oven power supply voltage. After the oven cuts back, the output will drop to approximately 3.5 volts (at $25^{\circ} \mathrm{C}$). The output impedance of this circuit is 10,000 ohms. Figure 2-2 shows an oven monitor LED indicator circuit.

Figure 2-2. Oven Monitor LED Circuit

2-20. MATING CONNECTORS AND MOUNTING

2-21. The 10811A Oscillator requires a 0.156 " C-C 15-pin printed circuit connector. The recommended connector is the CINCH $250-15-30-210$ 50-30S-30 (HP 1251-0160), Vishay/Dale (HP 1251-2035) EB81BN15TGW, EDAC 305-030-500-202 (Mouser 587-307-030) or 305-030-520-202. The 10811A can be secured with two $6-32$ screws, $1 / 4$-inch long. Figure 2-3 shows the power supply connection for the 10811A. Figure $2-5$ shows the mechanical mounting dimension for the 10811A and 10811B.

Figure 2-3. 10811A Supply and Output Connections

Model 10811A/B
2-22. The 10811B Oscillator uses solder terminals with filtered feedthrough capacitors for power and oven monitor outputs and SMB subminiature of snap-on connectors for the 10 MHz output and EFC. The 10811B also has one internally threaded mounting stud on the bottom cover and two located on the top. The three studs are threaded for $4-40$ screws, $1 / 4$-inch deep. These mounting studs may be used with vibration isolators such as the LORD \#J2924-2-1 (HP Part No. 1520-0094). However, for ease of testing and interfacing, a 6-pin Amphenol connector is attached. If you wish to use this connector, the following parts are required to build its mate.

Part Number
Axial Load
Deflection
Axial Spring Rate
Radial Spring Rate
Thickness
Diameter
LORD J292421
1 (lbs) $4(\mathrm{~N})$
$0.006(\mathrm{in}) 1.5(\mathrm{~mm})$
$17(\mathrm{lbs} / \mathrm{in}) 2.6(\mathrm{~N} / \mathrm{mm})$
$17(\mathrm{lbs} / \mathrm{in}) 2.6(\mathrm{~N} / \mathrm{mm})$
$0.0625(\mathrm{in}) 1.6(\mathrm{~mm})$
$0.735(\mathrm{in}) 18.7(\mathrm{~mm})$

Description	Quantity	HP Part No.	Amphenol Part No.
Receptacle	1	$1251-4297$	$221-1508$
Pin-Female	5	$1251-4734$	$220-883-03$
Guide-Pin	2	$1251-0597$	$221-590$

2-23. If you do not wish to use the Amphenol connector, it may be easily removed. The SMB connectors mate to Cablewave Systems, Inc. \#700156 or equivalent HP Part No. 1250-0885 (not supplied). Figure 2-4 shows the connections for the 10811B Oscillator.

Figure 2-4. 10811B Supply and Output Connections

2-23. INSTALLATION INSTRUCTIONS

2-24. Figure 2-5 shows the mechanical mounting dimensions of the $10811 \mathrm{~A} / \mathrm{B}$ Oscillators for use in custom installation. Since all quartz oscillators are sensitive to shock, vibration, radiation fields, and ambient temperature changes, to obtain the best performance from your 10811A/B, these factors should be taken into consideration. To optimize performance therefore:

1. The $10811 \mathrm{~A} / \mathrm{B}$ should be mounted in an area that has a minimum amount of vibration or shock accelerations. In addition, the $10811 \mathrm{~A} / \mathrm{B}$ should be mounted so that the vibrational forces act along the "minimum G sensitivity" axis shown in Figure 2-5.
2. The $10811 \mathrm{~A} / \mathrm{B}$ should be mounted as far as possible from transformers or fan motors that radiate electromagnetic fields.
3. The $10811 \mathrm{~A} / \mathrm{B}$ should be mounted away from the main system airflow in order to isolate it as much as possible from ambient temperature changes.

Figure 2-5. Mechanical Mounting Dimensions

2-25. INSTALLATION INSTRUCTIONS (HP INSTRUMENT)

2-26. The 10811A may be installed in most Hewlett-Packard instruments that already have a 10544A or 10544B oscillator or has provisions for it. The 10811A may be exchanged directly without any circuit change or modification.

2-27. If the instrument does not have a 10544A oscillator installed, but is available as an option, then the service manual for that instrument should be consulted to see if an oscillator support board (power supplies) is required. Once the support board is installed, the 10811A can be installed in place of the 10544A. Consult your nearest sales and service office for more details.

2-28. OPERATING ENVIRONMENT

2-29. TEMPERATURE. The $10811 \mathrm{~A} / \mathrm{B}$ may be operated in temperatures from $-55^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$.
2-30. MAGNETIC FIELDS. Sidebands due to 0.1 milliTelsa (1 Gauss) rms at 100 Hz will be down more than 90 dB from carrier.

2-32. ALTITUDE. The frequency change will be typically 2×10^{-9} for altitudes up to $15.2 \mathrm{~km}(50,000 \mathrm{ft}$).
2-33. SHOCK. The 10811A/B can withstand a shock up to 30 Gs for $11 \mathrm{~ms}, 1 / 2$ sine wave.

2-34. STORAGE AND SHIPMENT

2-35. Environment

2-36. The 10811A/B may be stored or shipped in environments with the following limits:
Temperature $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Altitude 15.2 Km (50,000 feet)

2-37. PACKAGING

2-38. Original Packaging

2-39. Containers and materials identical to those used in factory packaging are available through Hewlett-Packard offices. If the instrument is being returned to Hewlett-Packard for servicing, attach a tag indicating the type of service required; return address, model number, and full serial number. Also, mark the container Fragile to ensure careful handling. In any correspondence, refer to the instrument by model number and full serial number.

2-40. Other Packaging

2-41. The following general instructions should be used for repacking with commercially available materials.

1. Wrap instrument in heavy paper or plastic. (If shipping to Hewlett-Packard office-of service center, attach tag indicating type of service required; return address, model number, and full serial number.)
2. Use strong shipping container. A double-wall carton made of 350 -pound test material is adequate.
3. Use a layer of shock-absorbing material 70 to 100 mm (3 to 4 inch) thick around all sides of the instrument to provide firm cushioning and prevent movement inside container. Protect control panel with cardboard.
4. Seal shipping container securely.
5. Mark shipping container FRAGILE to insure careful handling.
6. In any correspondence, refer to instrument by model number and full serial number.

SECTION III

OPERATION

3-1. INTRODUCTION

3-2. This section contains operating information including operating characteristics and operating procedure.

3-3. BASIC POWER-UP DESCRIPTION

3-4. The following paragraph is a basic description of the actions occurring when power is applied to the oscillator. This description assumes the oscillator is at room temperature $\left(25^{\circ} \mathrm{C}\right)$.

3-5. When power is applied to the oscillator, 10 MHz will appear at the output. The oven controller circuit will go into its full warm-up mode. In this mode the maximum heating power is applied to the oven mass. The oven mass is a metal casting surrounding the oscillator circuits and crystal. The OVEN MONITOR output will be approximately 1.5 volts below the oven power supply voltage. In about 10 minutes, the oven will have heated to the proper temperature. The oven controller will begin to regulate at this temperature, and the OVEN MONITOR will drop to approximately 3.5 volts. It is normal for the oven current to drop momentarily to a low value when the oven temperature first reaches maximum. This lasts less than second and is a typical circuit action.

3-6. After the first 10 minutes have passed, the oscillator may be initially adjusted using the following procedure. The oscillator should be readjusted after 24 hours for maximum accuracy. Periodic adjustment schedule can be determined by the procedure described in paragraph 3-10.

3-7. FREQUENCY ADJUSTMENT

3-8. The frequency adjustment is the only periodic adjustment required. This may be initially adjusted after 10 minutes of warm-up and then readjusted after 24 hours.

3-9. FREQUENCY ADJUSTMENT PROCEDURE

a. Connect reference frequency standard (multiple or submultiple of 10 MHz) to the EXTERNAL SYNC INPUT of the oscilloscope.
b. Connect oscillator output (10811A/B) to Channel A. Set the sweep speed to $.1 \mu \mathrm{~s} / \mathrm{div}$.
c. Set the oscilloscope to EXTERNAL TRIGGER and adjust the oscilloscope so that its sweep is synchronized to the reference frequency. The pattern will appear to move.
d. Using an insulated tuning tool, adjust oscillator frequency adjustment (FREQ ADJUST on the $10811 \mathrm{~A} / \mathrm{B})$ for minimum sideways movement of the oscilloscope pattern.
e. By timing the sideways movement (divisions per second on the oscilloscope), the approximate offset can be determined based on the oscilloscope sweep speed shown in Figure 3-1
f. For example, if the trace moves 1 division in 10 seconds and the sweep speed is $0.01 \mu \mathrm{~s} / \mathrm{div}$., the oscillator's frequency is 1×10^{-9} different from that of the reference frequency, as can be seen from the calibration, Table 3-1. The calculation can also be made by the following formula:

where $\Delta f / f=$ offset of the oscillator with respect to the reference standard $\Delta t=$ the movement of the oscilloscope pattern ($1 \mathrm{div} . \mathrm{X} .01 \mu \mathrm{~s} / \mathrm{div}$.) $=.01, \mu \mathrm{~s} \mathrm{t}=$ time required for $\Delta \mathrm{t}$ to occur.

$$
\frac{\Delta f}{f}=\frac{1 \mathrm{div} \times 0.01 \mu \mathrm{~s} / \mathrm{div} .}{10 \mathrm{~s}}=1 \times 10-9
$$

Sweep movement versus calibration accuracy.

Figure 3-1. Oscillator Adjustment Set-Up

3-10. ACCURACY VS ADJUSTMENT INTERVAL

3-11. Table 3-1 shows the required adjustment interval to maintain a required accuracy. If the aging rate is known to be 3×10^{-10} /day, then a more precise adjustment interval can be determined. (The specification for aging is $<5 \times 10^{-10} /$ day, but aging is typically less than this.) The aging rate can be expected to gradually decrease, and typically will reach 1×10^{-10} /day within 1 -year.

Example:

> Known aging rate $3 \times 10^{-10} /$ day
> Maximum allowable error
> 5×10^{-9}

Model 10811A/B
3-12. Find the line on Table 3-1 corresponding to the oscillator's aging rate. Then find the maximum allowable error (accuracy) on the horizontal axis. Follow the maximum allowable error vertically until it crosses the oscillator's known aging rate. Move horizontally to the left and read the minimum calibration interval in days.

```
maximum allowable error
known aging rate (per day) = calibration interval in days
```

Example:
5×10^{-9} (maximum allowable error)
$3 \times 10^{-10} /$ day (known aging rate) $=16.67$ days (~ 17 days) $3 \times 10^{-10} /$ day (known aging rate)
3-13. From Table 3-1, the oscillator should be adjusted approximately every 17 days.
3-14. The minimum calibration interval may also be determined from the following formula:

Table 3-1. Accuracy vs Adjustment

Page Intentionally Left Blank

SECTION IV

OPERATIONAL VERIFICATION

4-1. INTRODUCTION

4-2. The tables in this section test the instrument's performance using the specifications of Table 1-1 as the performance standards. All tests can be performed without access to the interior of the instrument.

4-3. OPERATIONAL VERIFICATION

4-4. The Operational Verification, Table 4-2, can be performed to give a high degree of confidence that the 10811A/B is operating properly without performing the complete performance tests. The operational verification should be useful for incoming $Q A$, routine maintenance, and after instrument repair.

4-5. EQUIPMENT REQUIRED

4-6. Equipment required for the operational verification is listed in the recommended test equipment in Section I, Table 1-2, and in Table 4-1. Any equipment that satisfies the critical specifications given in the table may be substituted for the recommended model(s).

4-7. TEST RECORD

4-8. Results of the Operational Verification, Table 4-2, may be tabulated on the Operational Verification Record, Table 4-4.

4-9. If the 10811A/B Oscillator is to be tested outside its normal installation, a special test connector may be used for applying power to the oscillator. The connector also has a BNC connector for the 10 MHz output signal. A photo, parts list, and construction information is located in Section VIII. The connector should be used under the following circumstances:
a. If the 10 MHz output is not easily accessible.
b. If there is a buffer amplifier between the $10811 \mathrm{~A} / \mathrm{B}$ output and the oscillator output jack on the rear panel of the instrument.
c. Troubleshooting.
d. If testing of the oscillator in its normal installation causes erroneous measurements (e.g., fan noise, vibrations, noisy circuits, etc.). If in doubt, use the special test connector.

4-10. Table 4-1 lists the five sections of the operational verification and their descriptions.

Table 4-1. Operational Verification Descriptions

1. Amplitude (0.55 volts (± 0.05 volts $/ 50 \Omega, 1$ volt ± 0.2 volt $/ 1 \mathrm{k} \Omega$).
a. Equipment required:

BNC-to-BNC Cable
500 and $1 \mathrm{~K} \Omega$ loads
3406A AC Voltmeter
2. Harmonic Distortion (-25 dB below 10 MHz output signal).
a. Equipment required:

141T Display Section
8553B Spectrum Analyzer - RF Section
8552B Spectrum Analyzer - IF Section
BNC-to-BNC Cable
3. Spurious Signals - Signals unrelated to the 10 MHz output signal (-100 dB below the 10 MHz output signal).

NOTE
Due to the complexity of measuring signal 100 dB below a reference, this procedure will verify that no spurious signals exist greater than 65 dB below the normal 10 MHz output signal.
4.
a. Equipment required:

141T Display Section
8553B Spectrum Analyzer - RF Section 8552B
Spectrum Analyzer - IF Section
BNC-to-BNC Cable
5. Short Term Stability (5×10^{-12} for 1 -second averaging; 1×10^{-11} for 10811-60105).
a. Equipment required:

5065A Rubidium Vapor Frequency Standard
5061A Option 004, or 105A/B, See Table 1-2
HP Model 5390A may be used in place of the following:
10830A Mixer
5345A Electronic Frequency Counter with Option 011
9825A Calculator with 98210A and 98213A or 98214A or 98216A
98034A HP-IB Interface
10515A Doubler
6-Plug AC Power Strip 3
BNC-to-BNC Cables
6. Long Term Stability $-<5 \times 10^{-10}$ over 24 hours; $1.5 \times 10^{-9} / 24$ hours for 10811-60105.
a. Equipment required:

HP 1740A 100 MHz Oscilloscope,
105A/B Quartz Crystal Oscillator,
5065A Rubidium Frequency Standard, or 5061A Cesium Beam Frequency Standard.
See Table 1-2.
4-11. In the following tests, the power supply voltages to the oscillator are not shown. They are assumed to be:

$$
\begin{aligned}
& \text { Oscillator Circuits ... } \mathrm{V} \text { dc } \\
& \text { Oven Circuits }
\end{aligned}
$$

4-12. Any supply voltages within the specified limits listed in Table 1-1 may be used and will not affect the operational verification. The voltages are only reference points and are used throughout this manual.

Table 4-2. Operation Verification Procedure

1. Amplitude Test

Procedure:
a. Set the 3406A Voltmeter to the I-volt range.
b. Insert the 3406A Voltmeter probe into the 1 volt jack on the front panel.
c. With the CAL button out, set the 3406A to zero by adjusting the ZERO control on the front panel.
d. Press the CAL button and adjust the 3406A to read 1 V by adjusting the CALIBRATE control on the front panel.
e. Remove the probe from the 1 -volt jack and conned to the $10811 \mathrm{~A} / \mathrm{B}$ output through a 50 ohm termination.
f. Verify amplitude of 0.55 volts ± 0.05 volts. Mark the test card.
g. Remove the 50Ω termination and replace with a $1 \mathrm{k} \Omega$ termination.
h. Verify amplitude of 1 volt ± 0.2 volt.
2. Harmonic Distortion
a. Set 141 T Spectrum Analyzer controls to:

	OFF
BANDWIDTH	30 kHz
SCAN WIDTH per Division	$5 \mathrm{MHz} / \mathrm{div}$.
INPUT ATTENUATION	50 dB
VIDEO FILTER	OFF
SCAN TIME	$10 \mathrm{~ms} / \mathrm{div}$.
SCAN MODE	INT
SCAN TRIGGER	AUTO
LOG REF	

b. Connect the output of the $10811 \mathrm{~A} / \mathrm{B}$ to the spectrum analyzer input.
c. Apply power to the oscillator and spectrum analyzer. Allow 10 minutes for oscillator to stabilize.
d. Adjust Spectrum Analyzer FREQUENCY control so that 10 MHz signal is at left-edge of display (center frequency, approximately 35 MHz).
e. Adjust LOG REF LEVEL vernier control (right hand knob) so that 10 MHz signal is at top of display gratitude. Verify that all harmonics of the 10 MHz signal are more than 25 dB down. Leave spectrum analyzer connected for next test.
3. Spurious Output Signals
a. Use the test setup as described in Test 2.
b. Set the Spectrum Analyzer controls to:

c. Adjust FREQUENCY so 10 MHz signal is at center of display. Adjust LOG REF LEVEL so signal is at top of graticule.
d. Set TUNING STABILIZER switch "on" (up) and reset Spectrum Analyzer controls as follows:
BANDWIDTH $.03 \mathrm{kHz}(30 \mathrm{~Hz})$
SCAN WIDTH 5 kHz
SCAN TIME $10 \mathrm{~s} / \mathrm{div}$.

Table 4-2. Operational Verification Procedure (Continued)
e. Set INTENSITY and PERSISTENCE controls for an easily readable display at the 10 s scan time.
f. Verify that there are no repeating signals above a level 65 dB below the 10 MHz signal (i.e., no signals between -64 dB and 0 dB). Allow the analyzer to sweep through several times to verify that no signals repeat on successive sweeps. Signals greater than -65 dB indicate possible spurious signals on 10811A/B output. Be sure there is no other equipment nearby that could be radiating signals into the measurement. Be sure power supplies meet noise specifications as described in Table 1-1.
4. Short-Term Stability

NOTE

If the model 5390A frequency stability analyzer is available it should be used in place of the text described below. Follow instructions in the 5390A operating manual to make measurement.
a. Connect the equipment as follows:

AC POWER
CONNECT TO SAME
SET UP

NOTE

Arrange the instruments as shown. Keep all signal leads away from power cords and HP-IB cable. DO NOT FORGET THE 10515A DOUBLER ON THE 5065A OUTPUT. Connect all ac power to the same strip so that all ground paths are as short as possible. DO NOT STACK THE INSTRUMENTS. Use coax for all signal leads.
b. Set the 5345 A address to 18 :

A5	A4	A3	A2	
$1(16)$	$0(8)$	$0(4)$	$1(2)$	$=18$

c. Allow 1-hour warmup to stabilize the test equipment and the 10811A/B.
d. Set the 5345A front panel controls as follows:

EQ
GATE TIME .. 1 l
SAMPLE RATE .. max (ccw)
GATE CONTROL INPUT (REAR PANEL) INTERNAL
A LEVEL .. PRESET
B LEVEL .. PRESET
A IMPEDANCE .. 50 ohm
B IMPEDANCE ... 50 ohm
A ATTENUATOR .. X1

Table 4-2. Operational Verification Procedure (Continued)

e. Adjust the $10811 \mathrm{~A} / \mathrm{B}$ to read $\approx 9.5 \mathrm{~Hz}$ (reading must be less than 10 Hz).

NOTE
The display on the 5345A should be changing only in the .001 Hz or .0001 Hz digits. This represents frequency deviations of parts in 10^{11} and 10^{12}, respectively.
f. Type the program from Figure 4-1 into the 9835A calculator. (See paragraph 4-13 for use of other controllers and counters.)
g. Press "RUN". When the program asks for the number of samples, enter "100" and press CONTINUE.
h. Allow 2 to 3 minutes for the program to finish. Verify a short-term stability of less than 5 X 10^{-12}.

NOTE
Measurement of short-term stability is somewhat difficult and exacting. If the $10811 \mathrm{~A} / \mathrm{B}$ fails this test, be sure no signal sources other than the test reference are operating near the measurement system, as these can cause interference with the measurement. Other sources of error are vi brat ion, nearby electrical equipment, poor shielding, or motors that can radiate signals into the $10811 \mathrm{~A} / \mathrm{B}$. The failure to connect the HC input (to ground) can cause poor frequency stability as can a noisy voltage being used for the EFC control. If another oscillator is available (known to be good), verify the accuracy of the measurement system. This could save considerable troubleshooting time.
Two other possibilities external to the oscillator are the oven and oscillator power supplies. These must be stable in order for the circuits to function properly. See Table 1-1, Specifications, and paragraph 2-6 for power supply noise requirements.
5. Long-Term Stability

NOTE

The 10811A/B will typically take 24 to 48 hours to reach its specified aging rate after storage or shipment. In some cases, if extreme environmental conditions were encountered during storage, the $10811 \mathrm{~A} / \mathrm{B}$ could take up to 1 -week to achieve its specified aging rate.
a. Connect reference frequency standard (multiple or submultiple of 10 MHz) to the EXTERNAL SYNC INPUT of the oscilloscope.
b. Connect the output of the $10811 \mathrm{~A} / \mathrm{B}$ to CHANNEL A INPUT. Adjust sweep speed to $0.1 \mu \mathrm{~s} / \mathrm{div}$.
c. Set oscilloscope to EXTERNAL TRIGGER and adjust it so that its sweep is synchronized with the reference frequency. The oscilloscope pattern will probably be moving.
d. Carefully adjust oscillator frequency control so that pattern on oscilloscope stops. Use a higher sweep speed on oscilloscope for better resolution.
e. When the oscillator is adjusted as close as possible to frequency, measure the frequency as described in paragraph 5-13.
f. Allow the oscillator to remain undisturbed for 48 hours, then again measure the frequency. The difference between the frequency measured in step e and that measured in this step is the aging rate per 48 hours and should be less than 1×10^{-9}. The measurement is allowed to run for 48 hours so that the frequency offset measured will be well in excess of the system resolution. In many cases the daily aging rate of $<5 \times 10^{-10}$ per day can be verified in 24 hours.

Figure 4-1. BASIC Program

10	Short term stability test 10811A/B
20	I NPUT "Enter number of samples", Samples
30	Loop = 0
40	OUTPUT 7, 18; "\| $2 \mathrm{E} 1<$ < 812" ! 5325A Codes
50	ENTER 7, 18; A ! Empty dummy buffer
60	ENTER 7, 18; A ! First measurement
70	Count $=0$
80	FOR LOOP = 1 to Samples
90	ENTER 7, 18; B ! Successive measurements
100	Count $=$ Count $+(A-B)^{\wedge} 2$
110	$\mathrm{A}=\mathrm{B}$
120	FIXED 0
130	DISP LOOP
140	NEXT LOOP
150	PRINTER I S O
160	FLOAT 1
170	PRINT "STS = " SQR(Count/(2*Loop))/1E7
180	GOTO 50
190	STOP

4-13. OPTIONAL CONTROLLERS AND COUNTERS

4-14. Optional Controllers

$4-15$. Figure $4-2$ lists the program for the 9825A Calculator.

Figure 4-2. HPL Program

4-16. Optional Counters

4-17. Table 4-3 shows the program codes set required when using the 5316A counter. Replace line 4 (HPL) or line 40 (BASIC) with the appropriate codes. Be sure the optional counter address is set to "18".

5316A
(gate time must be set manually to 1 s on the front panel)

Table 4-3. 5316A Program Codes
INTRIATDGADMAIRE

Page Intentionally Left Blank

Table 4-4. Operational Verification Record

10811A 10811B Serial Number \qquad	Date	PASS	FAIL
TEST	VALUE		
1. Output Amplitude			
2. Harmonic Distortion			
3. Spurious Signals			
4. Short-Term Stability @ \quad =1-second			
5. Long-Term Stability			
Name			

SECTION V

ADJUSTMENTS

5-1. INTRODUCTION

5-2. This section describes the adjustments required to maintain the 10811A/B operating characteristics within specifications. Adjustments should be made when required, such as after a performance test failure or when components are replaced that may affect an adjustment.

5-3. EQUIPMENT REQUIRED

5-4. The test equipment required for the adjustment procedure is listed in Table 1-2, Recommended Test Equipment. Substitute instruments may be used if they meet the critical specifications.

5-5. FACTORY SELECTED COMPONENTS

5-6. Some of the values in the parts lists are selected during manufacturing to meet circuit requirements. These parts are marked with an asterisk (*) in the parts list and schematic diagrams, with average value shown.

5-7. ADJUSTMENT LOCATION

5-8. Adjustment locations are identified in this section and in the component locators in Section VIII, Schematic Diagrams.

5-9. SAFETY CONSIDERATIONS

5-10. This section contains warnings and cautions that must be followed for your protection and to avoid damage to the equipment.

> WARNING
> MAINTENANCE DESCRIBED HEREIN IS PERFORMED WITH POWER SUPPLIED TO THE INSTRUMENT, AND PROTECTIVE COVERS REMOVED. SUCH MAINTENANCE SHOULD BE PERFORMED ONLY BY SERVICE-TRAINED PERSONNEL WHO ARE AWARE OF THE HAZARDS INVOLVED (FOR EXAMPLE, FIRE AND ELECTRICAL SHOCK). WHERE MAINTENANCE CAN BE PERFORMED WITHOUT POWER APPLIED, THE POWER SHOULD BE REMOVED.
> BEFORE ANY REPAIR IS COMPLETED, ENSURE THAT ALL SAFETY FEATURES ARE INTACT AND FUNCTIONING, AND THAT ALL NECESSARY PARTS ARE CONNECTED TO THEIR PROTECTIVE GROUNDING MEANS.

5-11. OSCILLATOR FREQUENCY ADJUSTMENT

5-12. The following frequency adjustment procedure is the same for both the 10811A and 10811B. Allow the oscillator to warm up for 24 hours before making this adjustment. See Figure 5-1.
a. Connect reference frequency standard (multiple or submultiple of 10 MHz) to the EXTERNAL SYNC INPUT of the oscilloscope. Adjust oscilloscope so that sweep is synchronized with reference frequency.

MOVEMENT	SWEEP SPEED			NOTES		
	$\mathbf{1 \mu s} / \mathbf{c m}$	$\mathbf{0 . 1} \boldsymbol{\mu} \mathbf{s} / \mathbf{c m}$	$\mathbf{0 . 0 1} \mu \mathbf{s} / \mathbf{c m}$			
$1 \mathrm{~cm} / \mathrm{s}$	1×10^{-6}	1×10^{-7}	1×10^{-8}	Time scope trace movement		
$1 \mathrm{~cm} / 10 \mathrm{~s}$	1×10^{-7}	1×10^{-8}	1×10^{-9}	with second hand of watch or		
$1 \mathrm{~cm} / 100 \mathrm{~s}$	1×10^{-8}	1×10^{-9}	1×10^{-10}	clock.		

Sweep movement versus calibration accuracy.

Figure 5-1. Oscillator Adjustment Setup
b. Connect oscillator output to Channel A of the oscilloscope. Adjust sweep speed so pattern movement can be seen.
c. Adjust oscillator frequency adjustment (FREQ AD) on 10811A/B Crystal Oscillator unit) for minimum sideways movement of the 10 MHz displayed signal. Increase oscilloscope sweep speed for greater resolution.

5-13. Offset Calculation:

a. By timing the sideways movement (divisions per second on the oscilloscope), the approximate offset can be determined based on the oscilloscope sweep speed as shown below.
b. For example, if the trace moves 5 divisions in 10 seconds and the sweep speed is $0.01 \mu \mathrm{~s} / \mathrm{div}$., the oscillators signal is within $5 \times 10-9$ of the reference frequency. The calculation can also be made as follows:

Where:
$\Delta f / f$ is the normalized frequency difference between the $10811 \mathrm{~A} / \mathrm{B}$ and the reference signal Δt is the change observed in the oscilloscope
t is the time required for Δt to occur.

5-14. OUTPUT AMPLITUDE ADJUSTMENT

$5-15$. The output amplitude is adjusted by the setting of the variable resistor R 6 which is in the feedback of the AGC circuitry. It is not accessible from the outside of the oscillator.

5-16. The following procedure should be used to adjust the output amplitude only if the output level falls outside the specified level, or repairs have been made to the main oscillator or AGC circuitry.

1. Remove oscillator from instrument.

WARNING

THE OSCILLATOR'S INTERNAL OVEN MASS TEMPERATURE MAY BE AS HIGH AS $85^{\circ} \mathrm{C}\left(185^{\circ} \mathrm{F}\right)$. TO AVOID SERIOUS BURNS DO NOT REMOVE OSCILLATOR CIRCUITS AND/OR OVEN MASS ASSEMBLY FROM THE OUTER HOUSING UNTIL THE OSCILLATOR HAS SUFFICIENTLY COOLED (APPROXIMATELY 1 HOUR WITH BOTTOM COVER AND FOAM INSULATOR REMOVED). THE OUTER HOUSING TEMPERATURE IS NOT A RELIABLE INDICATION OF THE INTERNAL TEMPERATURE.
2. Remove bottom cover and allow oscillator to cool (if previously operated). To remove cover:
a. For the 10811A, remove the three screws securing the bottom cover. Remove the two screws securing the P.c. edge connector to the outer can. Remove the top foam insulator to expose the oscillator circuits.

CAUTION

DO NOT pull the oscillator out of the outer housing by pulling on the P.C. edge connector or flex circuit!!
b. For the 10811B remove the four screws securing the bottom cover. Disconnect the bottom cover flex circuit from the seven pin connector.
3. Once the oscillator is cool enough to handle, remove the oscillator assembly by pushing on the tuning capacitor (top of oscillator) with a long, small diameter tool until the oscillator assembly can be removed freely.

NOTE

Under no circumstances should the oven circuit be operated with the oven mass removed from the outer housing. To do so will cause damage to components inside the oven mass.
4. Obtain HP Model 6215A Power Supply or equivalent. Preset power supply to 12 V dc. Turn off power supply before proceeding

Figure 5-2. 10811A Amplitude Adjustment Set-up to next step.
5. For the 10811A, connect Model 6215A Power Supply to pins 2 Hand $3(+$) of a 15 pin printed circuit connector.
a. Insert the 10811A P.c. edge connector into the 15 pin P.c. connector. (See Section VIII for a special 10811A test connector.)
b. Connect pin 1 of the 15 pin pc connector through a 50Ω termination (use pin 2 as ground) to a 3406A Sampling Voltmeter. See Figure 5-2. Do not apply power to the oven circuits.
c. For the 10811B, reconnect the flex circuit attached to the bottom cover and connect the 6215A as shown in Figure 5-3. DO NOT APPLY POWER TO THE OVEN CIRCUITS. A Micon to BNC adaptor is available for the 10 MHz output (HP Part Number 05060-6116).
d. For both 10811A and B, turn on the 6215A power supply and adjust R6 AGC control for .55 V rms $\pm 50 \mathrm{mV}$ as read on the 3406A Sampling Voltmeter. R6 is accessible through the small hole in the side of the oven mass.
6. Turn off the 6215A power supply and reassemble the oscillator.

Figure 5-3. 108118 Amplitude Adj Set-up

SECTION VI

REPLACEABLE PARTS

6-1. INTRODUCTION

6-2. This section contains information for ordering replacement parts. Table 6-1 lists parts in alphanumerical order of their reference designators and indicates the description and HP Part Number of each part, together with any applicable notes. The table includes the following information.
a. Description of part (see abbreviations below).
b. Typical manufacturer of the part in a five-digit code; see list of manufacturers in Table 6-2.
c. Manufacturer's part number.
d. Total quantity used in the instrument (Qty column).

6-3. ORDERING INFORMATION

6-4. To obtain replacement parts, address order of inquiry to your local Hewlett-Packard Sales and Service Office (see lists at rear of this manual for addresses). Identify parts by their Hewlett Packard part numbers.
a. Instrument model number.
b. Instrument serial number.
c. Description of the part.
d. Function and location of the part.
e. Check digit.
f. Quantity required.

6-5. HP PART NUMBER ORGANIZATION

6-6. The following is a general description of the HP part number system.

6-7. Component Parts and Materials

6-8. Generally, the prefix of HP part numbers identifies the type of device. Eight-digit part numbers are used, where the four-digit prefix identifies the type of component, part, or material and the four-digit suffix indicates the specific type. Following is a list of some of the more commonly used prefixes for component parts. The list includes HP manufactured parts and purchased parts.

Prefix	Component Part Material
$0121-$	Capacitors, Variable (mechanical)
$0122-$	Capacitors, Voltage Variable (semiconductor)
$0140-$	Capacitors, Fixed
$0150-$	Capacitors, Fixed,
$0160-$	Capacitors, Fixed
$0180-$	Capacitors, Fixed Electrolytic
$0330-$	Insulating Materials
$0340-$	Insulators, Formed
$0370-$	Knobs, Control
$0380-$	Crystals
$0470-$	Adhesives
$0490-$	Relays
$0510-$	Fasteners
$0674-$ through 0778-	Resistors, Fixed (non wire wound)
$0811-$ through 0831-	Resistors (wire wound)
$1200-$	Sockets for components
$1205-$	Heat Sinks
$1250-$	Connectors (RF and related parts)
$1251-$	Connectors (non RF and related parts)
$1410-$	Bearings and Bushings
$1420-$	Batteries
$1820-$	Monolithic Digital Integrated Circuits
$1826-$	Monolithic Linear Integrated Circuits
$1850-$	Transistors, Germanium PNP
$1851-$	Transistors, Germanium NPN
$1853-$	Transistors, Silicon PNP
$1854-$	Transistors, Silicon NPN
$1855-$	Field-Effect- Transistors
$1900-$ through 1912-	Diodes
$1920-$ through $1952-$	Vacuum Tubes
$1990-$	Semiconductor Photosensitive and Light-emitting Diodes
$3100-$ through $3106-$	Switches
$8120-$	Cables
$9100-$	Transformers, Coils, Chokes, Inductors, and Filters

6-9. For example, 1854-0037, 1854-0221 and 1851-0192 are all NPN transistors. The first two are silicon and the last is germanium.

6-10. GENERAL USAGE PARTS

6-11. The following list gives the prefixes for HP manufactured parts used in several instruments, e.g., side frames, feet, top and bottom covers, etc. These are eight-digit part numbers with the fourdigit prefix identifying the type of parts as shown below:

Type of Part	P/N Suffix
Sheet Metal	50000 to 5019 -
Machined	$5020-$ to $5039-$
Molded	$5040-$ to $5059-$
Assembly	5060 to 5079
Component	$5080-$ to 5099

6-12. Specific Instrument Parts

6-13. These are HP manufactured parts for use in individual instruments or series of instruments. For these parts, the prefix indicates the instrument and the suffix indicates the type of part. For example, 05328-60001 is an assembly used in the 5328A. Following is a list of suffixes commonly used.

Type of Part	P/N Suffix
Sheet Metal	-00000 to -00499
Machined	-20000 to -20499
Molded	-40000 to -40499
Assembly	-60000 to -60499
Component	-8000 to -80299
Documentation	-90000 to -90249

6-14. Factory Selected Parts

6-15. Some of the values in the parts list are selected during manufacture to meet circuit requirements. These parts are marked with an asterisk (${ }^{*}$) in the parts list and schematic diagrams, with average values shown.

6-16. The 10811A/B Oscillator contains only one factory selected part which is R20 OVEN TEMPERATURE SET resistor. This resistor is supplied with the crystal, should the crystal require replacement. Table 8-1 lists the various resistors and their corresponding part numbers.

6-20. REPLACEABLE PARTS LIST LAYOUT

6-21. The 10811A and 10811B Oscillators are identical internally, except that the 10811B has had the 15 -pin pc edge connector removed and a 7-pin connector (11) placed on the board for the 10811B bottom cover flex circuit (see Figure 8-15). The only other difference is the outer housings. Thus the parts lists for the circuit boards are identical. The parts lists are set up in the following manner:

1. 10811A and 10811B Circuit Board Components and Miscellaneous Parts.
2. 10811A and 10811B Transistor Mounting Hardware.
3. 10811A and 10811B Oven Mass Assembly and covers.
4. 10811A Mechanical Parts (Housing).
5. 10811B Mechanical Parts (Housing).

Table 6-1. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{D} \end{aligned}$	Qt y	Description	$\begin{gathered} \text { Mfr } \\ \text { Code } \end{gathered}$	Mfr Part Number
	10811-60001	3	1	CIRCUI T BOARD COMPONENTS 10811A/B	28480	10811.60001
C1	0121.0511	6	1	TUNING CAPACITOR	28480	0121.0511
C2	0160.0576	5	11	CAPACITOR-FXD. $1 \mathrm{uF} \pm 20 \% 50 \mathrm{VDC}$ CER	28480	0160-0576
C3	0160-5109	0	1	CAPACITOR-FXD 15pF $\pm 5 \% 50 \mathrm{VDC}$ CER 0 ± 30	28480	0160-5109
C4	0160-0576	5		CAPACITOR-FXD. 1UF $\pm 20 \% 50 V D C$ CER	28480	0160-0576
C5	0160.0576	5		CAPACITOR-FXD . 1uF $\pm 20 \% 50 \mathrm{VDC}$ CER	28480	0160-0576
C6	0160-4935	8		CAPACITOR-FXD 510pF $\pm 1 \%$ 100VDC CER	72982	8121-100-COGO-511F
C7	0160-0576	5		CAPACITOR-FXD . 1uF $\pm 20 \% 50 V D C$ CER	28480	0160-0576
C8	0160-5110	3	1	CAPACITOR-FXD $62 \mathrm{pF} \pm 1 \% 50 \mathrm{VDC}$ CER 0 ± 30	28480	0160-5110
C9	0160.0576	5		CAPACITOR-FXD . 1uF $\pm 20 \% 50 V D C$ CER	28480	0160-0576
C10	0160-3874	2	2	CAPACITOR-FXD 10pF $\pm .5 \mathrm{PF} 200 \mathrm{VDC} \mathrm{CER}$	28480	0160-3874
C11	0160-0576	5		CAPACITOR-FXD . 1uF $\pm 20 \% 50 \mathrm{VDC}$ CER	28480	0160.0576
Cl 2	0160-4512	7	2	CAPACITOR-FXD 120pF $\pm 5 \% 200 \mathrm{VDC}$ CER	51642	200-200-NPO-1211
C13	0160.3479	7	3	CAPACITOR-FXD. O1uF $\pm 20 \%$ 100VDC CER	28480	0160-3879
C14	0160.0576	5		CAPACITOR-FXD. 1uF $\pm 20 \% 50 \mathrm{VDC}$ CER	28480	0160-0576
C15	0180.2617	1	1	CAPACI TOR-FXD 6.8uF +. $10 \% 35 \mathrm{VDC}$ TA	25085	D6R8G81B35K
C16	0160-0576	5		CAPACITOR-FXD. $14 \mathrm{~F} \pm 20 \% 50 \mathrm{VDC}$ CER	28480	0160-0576
C17	0160.3874	2		CAPACITOR-FXD 10pF $\pm .5 \mathrm{pF} 200 \mathrm{VDC}$ CER	28480	0160-3874
C18	0160.4947	2	1		28480	0160-4947
C19	0160.3879	7		CAPACITOR-FXD.01uF $\pm 20 \% 100 V D C$ CER	28480	0160-3879
C20	0160.3879	7		CAPACITOR-FXD.01uF +. 20% 100VDC CER	28480	0160-3879
C2 1	0160.0576	5		CAPACITOR-FXD.1uF +. 20% 50VDC CER	28480	0160-0576
C22	0160.0576	5		CAPACITOR-FXD.1uF +. 201 50VDC CER	28480	0160-0576
C23	0160-4512	7		CAPACITOR-FXD 120pF +. 5\% 200VDC CER	51642	200-200-NPO-1211
C2 4	0160.0576	5		CAPACITOR-FXD.1uF +. $20 \% 50 V D C$ CER	28480	0160-0576
CR1	0122.0244	4	1	DI ODE.VVC 100PF 5\% C4/C25-MIN=2 BVR-30V	28480	0122-0244
CR2	1901.0869	2	1	DI ODE.CUR RGLTR 1N5297 DO=7	04713	$1 N 5297$
CR3	1902.0984	4	1	$\begin{aligned} & \text { DI ODE } \mathrm{ZNR} \text { 6, } 4 \mathrm{~V} 2 \% \text { DO=7 PD }=.4 \mathrm{~W} \\ & \mathrm{~T} C=+.002 \% \end{aligned}$	28480	1902.0984
CR 4	1901.0535	9	3	DI ODE-SCHOTTKY	28480	1901.0535
CR5	1901.0535	9		DI ODE.SCHOTTKY	28480	190100535
CR6	1901.0535	9		DI ODE-SCHOTTKY	28480	1901.0535
E1	9170.0029		1	FERRITE BEAD (FOR Q1)	28480	9170-0029
F1	2110.0617	6	1	FUSE-THERMAL (10811-80008)	28480	2110.0617
L1	9100.2280	5	S	NDUCTORRF-CH.MLD 220uH 10\%. 10SDX. 26LG	28480	9100.2280
L2	9140.0352	2	1	NDUCTORRF-CH-MLD 330nH 1\%.10SDX. 26LG	28480	9140.0332
L3	9140.0353	3	1	NDUCTORRF-CH-MLD $430 \mathrm{hN} \mathrm{1} \mathrm{\% .10SDX}$.	28480	9140.0353
L 4	9100.2276	9	1	NDUCTORRF.CH.MLD 100uH 10\%.10SDX. 26 LG	28480	910002276
LS	9100.2280	5		NDUCTORRF.CH.MLD 220uH 10%. 10SDX. 26 LG	28460	9100-2250
L 6	9100.2280	5		NDUCTORRF.CH.MLD 220uH 10\%.10SDX. 26 LG	28480	910002280
L7	9100.2280	5		NDUCTORRF-CH.MLD 220uH 10\%.10SDX. 26 LG	28480	9100.2280
L 8	9100.2280	5		NDUCTORRF.CH.MLD 220uH 10\%.10SDX. 26 LG	28480	9100.2280
Q1	1854.0853	3	3	TRANSISTOR, SPL 2 N5179	28460	1854.0853
Q2	1954.0853	3		TRANSISTOR, SPL 2 N5179	28480	1854-0853
Q3	1854.0853	3		TRANSISTOR, SPL 2 N5179	28480	1854-0853
Q4	1854.0831	7	2	TRANSISTOR NPN 2 N6429A TO.92 PD=625mW	01713	$2 N 6429 \mathrm{~A}$
Q5	1854.0831	7		TRANSISTOR NPN 2 N6429A TO.92 PD=625mW	04713	2N6429A
Q6	1854.0023	9	1	TRANSISTOR NPN S1 TO-18 PD $=360 \mathrm{~mW}$	28480	1854-0023
Q7	10811.80001	0	2	TRANSISTOR NPN SI DARL TO-22049 PD=70W	04713	10811.80001
Q8	10811.80001	0		TRANSISTOR NPN SI DARL TO-220AB PD=70W	04713	10811-80001
Q9	1854.0833	9	1	TRANSISTOR NPN PD. 600 Mw FT6600m142	28480	1554-0833
R1	0698.7284	5	5	RESISTOR 100K 1\%.05W F TC. $0+0100$	24546	C3-1/8-T0-1003-G
R2	0698-7284	5		RESISTOR 100K 1\%, 50W F IC60 +. 100	24546	C3-1/8-T0-1001-G
R3	0699.0073	8	2	RESISTOR 10M 1\%. 125 W F IC60 +6, 100	28480	0699.0073
R 4	0699.0073	8		RESISTOR 10M 1\%. 125 W F TCsot. 100	28480	0699.0073
R5	0698.7263	0	1	RESISTOR 13.3K 1\%.05W F TCs $0+\cdots 100$	24546	C3-1/8-T0-1332-G
R6	2100.2489	9	1	RESISTOR-TRMR 5K 10\% C SIDE-ADJ 1-TRN	30983	ETSOX502
R7	0698-7272	1	1	RESISTOR $31.6 \mathrm{~K} 1 \%$. 05 W F TC $=0 \pm 100$	24546	C3-1/8-TO-3162-G
R8	0698.7232	3		RESISTOR 681 1\% , 05 W F $\mathrm{TC}=0 \pm 100$	24546	C3-1/8-T0-681R-G
R9	0698.7256	1	2	RESISTOR 6.61K 1%. 05 W F TC=0 0100	24546	C3.1/8-T0.6811.G
R10	0698.7256	1		RESISTOR 6.61K 1\%. 05 W F TC=0 100	24546	C3-1/8-T0-6811-G
R11	0698.7244	7	1	RESISTOR 2. $15 \mathrm{~K} 1 \%$, 05 W F TC=0 ± 100	24546	C3-1/8-T0-2151-G
R12	0698.7261	8	1	RESISTOR $11 \mathrm{~K} 1 \%$. 05 w F TC $=0 \pm 100$	24546	C3-1/8-T0-110244
R13	0698-7224	3		RESISTOR $3161 \% 1 \%$. 05 W F $\mathrm{TC}=0 \pm 100$	24546	C3-1/8-TO-316R-G
R14	0698.7280	1	1	RESISTOR 68.1K 1\%.05W F TC=0 ± 100	24546	C3-1/8-T0-6812-G
R15	0698.7284	5		RESISTOR 100K 1\%.05W F TC=0	24546	C3.1/8-T0-1003-G
R16	0698.7235	6		RESISTOR 909 1\% . 05 W F TC $=0 \pm 100$	24546	C3.1/8-T0-909R.G
R17	0698.7260 0698.3903	7	2	RESISTOR $10 \mathrm{~K} 1 \% .05 \mathrm{~W}$ F TC $=0 \pm 100$ RESISTOR $8.6 \mathrm{~K} .1 \% .05 \mathrm{~W} \mathrm{~F} \mathrm{TC}=0 \pm 10$	24546	C3-1/8-TO-1002-G 0698.3903
R19	0696.3903	7		RESISTOR 11.6K. $1 \% .05 \mathrm{WF}$ TC $=0 \pm 10$	28480	069803903
R20*	0698-0096	3	1	RESISTOR $9681 \% .125 \mathrm{~W}$ F TC $=0 \pm 100$	03888	PME55-1/8-T0-9680-F
R20*	0698.3495	2	1	RESISTOR $8661 \% .125 \mathrm{~W}$ F TC=0 ± 100	24546	C4-1/8-T0-866R-F
R20*	0698-3512	4	1	RESISTOR 1.18K 1\%. 125 W F TC $=0 \pm 100$	24546	C4-1/8-T0-1181.F

Table 6-1. Replaceable Parts (Continued)

$\begin{gathered} \text { Reference } \\ \text { Designation } \end{gathered}$	HP Part Number	$\begin{aligned} & C \\ & D \end{aligned}$	Qt y	Description	$\begin{gathered} \text { Mf r } \\ \text { Code } \end{gathered}$	Mfr Part Number
R20*	0698-3700	2	1	RESISTOR $7151 \% .125 \mathrm{~W}$ F TC=0 ± 100	24546	C4-1/8-T0-715R-F
R20*	0698-4014	3	1	RESISTOR $7871 \% .125 \mathrm{~W}$ F TC=0 0100	24546	C4-1/8-T0-787R-F
R20*	0696.4196	2	1	RESISTOR 1.07K 1\%. 125 W F TC $=0 \pm 100$	24546	C4-1/8-T0-1071-F
R20*	0696.4460	3	1	RESISTOR $6491 \% .125 \mathrm{~W}$ F TC $=0 \pm 100$	24546	C4-1/8-T0-649R-F
R20*	0696.4465	6	1	RESISTOR $9311 \% .125 \mathrm{~W}$ F TC=0 ± 100	24546	C4-1/8-T0-931R-F
R20*	0698-4469	2	1	RESISTOR $1.15 \mathrm{~K} 1 \% .125 \mathrm{~W}$ F TC $=0 \pm 100$	24546	C4-1/8-T0-1151-F
R20*	0698-5652	9	1	RESISTOR $5001 \% .125 \mathrm{~W}$ F TC=0 ± 100	24546	C4-1/8-T0-500R-F
R20*	0698.6970	4	1	RESISTOR 1.04K. $5 \% .125 \mathrm{~W} \mathrm{~F} \mathrm{TC=0} \pm 50$	28480	0698.6970
R20*	0698-6973	7	1	RESISTOR 1. $25 \mathrm{~K} .25 \% .125 \mathrm{~W}$ F TC=0 ± 25	28480	0698-6973
R20*	0696-6981	7	1	RESISTOR 1.29K. $5 \% .125 \mathrm{~W}$ F TC $=0 \pm 50$	28480	0698-6981
R20*	0698-7201	6	1	RESISTOR $34.61 \% .05 \mathrm{~W}$ F TC $=0 \pm 100$	24546	C3-1/8-T00-34R8-G
R20*	0698-7207	2	1	RESISTOR 61.9 1\%.05W F TC $=0 \pm 100$	24546	C3-1/8-T00-61Rg-G
R20*	0698-7212	9	1	RESISTOR $1001 \% .05 \mathrm{~W}$ F TC=0 ± 100	24546	C3-1/8-T0-100R.G
R20*	0698-7214	1	1	RESISTOR 1211%. 05 W F TC=0 ± 100	24546	C3-1/8-T0-121R-G
R20*	0698-7217	4	1	RESISTOR $1621 \% .05 \mathrm{~W}$ F TC=0 ± 100	24546	C3-1/8-T0-162R.G
R20*	0698-7219	6	1	RESISTOR $1961 \% .05 \mathrm{~W}$ F TC=0 ± 100	24546	C3-1/8-T0-196R-G
R20*	0698.7220	9	2	RESISTOR $2151 \% .05 \mathrm{~W}$ F TC=0 ± 100	24546	C3-1/8-T0-215R-G
R20*	0698-7222	1	1	RESISTOR $2611 \% .05 \mathrm{~W}$ F TC=0 ± 100	24546	C3-1/8-T0-261R-G
R20*	0698.7223	2	1	RESISTOR $2871 \% .05 \mathrm{~W}$ F TC=0 ± 100	24546	C3-1/8-T0-287R-G
R20*	0698.7224	3	2	RESISTOR $3161 \% .05 \mathrm{~W}$ F TC=0 ± 100	24546	C3-1/8-T0-316R-G
R20*	0698.7225	4	1	RESISTOR $3481 \% .05 \mathrm{~W}$ F TC=0 ± 100	24546	C3-1/8-T0-348R-G
R20*	0696.7226	5	1	RESISTOR 3831%. 05 W F TC=0 ± 100	24546	C3-1/8-T0.383R-G
R20*	0698.7227	6	1	RESISTOR 422 1\%. 05 W F TC=0 ± 100	24546	C3-1/8-T0.422R-G
R20*	0696.7228	7	1	RESISTOR 4641%. 05 W F TC=0 ± 100	24546	C3-1/8-T0-464R-G
R20*	0698.7229	8	2	RESISTOR 5111%. 05 W F TC=0 ± 100	24546	C3-1/8-T0.511R-G
R20*	0698.7230	1	1	RESISTOR 562 l \% . 05 W F TC=0 ± 100	24546	C3-1/8-T0-562R-G
R20*	0698.7231	2	1	RESISTOR 619 1\%. 05 W F TC=0 ± 100	24546	C3-1/8-T0-619R-G
R20*	0698.7232	3	4	RESISTOR 681 1\%.05W F TC=0 ± 100	24546	C3.1/8-T0.681R-G
R20*	0698.7233	4	1	RESISTOR 750 1\%.05W F TC=0 ± 100	24546	C3-1/8-T0.750R-G
R20*	0698-7254	5	1	RESISTOR $8251 \% .05 \mathrm{~W} \mathrm{~F} \mathrm{TC=0} \mathrm{ \pm 100}$	24546	C3-1/8-T0-825R-G
R20*	0698.7235	6	2	RESISTOR $9091 \% .05 \mathrm{~W}$ F TC=0 ± 100	24546	C3-1/8-T0.909R-G
R20*	0698.7236	7	1	RESISTOR 1K 1\%.05W F TC=0 ± 100	24546	C3-1/8-T0-1001-G
R20*	0698.7237	8	1	RESISTOR 1.1k $1 \% .05 \mathrm{~W}$ F TC=0 ± 100	24546	C3-1/8-T0-1101.G
R20*	0696.7238	9	1	RESISTOR 1.21K 1\%.05W F TC=0 ± 100	24546	C3-1/8-T0-1211-G
R20*	0698.7239	0	1	RESISTOR 1.33K 1\%.05W F TC=0 ± 100	24546	C3-1/8-T0-1331.G
R20*	0757-1100	8	1	RESISTOR $6001 \% .125 \mathrm{~W}$ F TC= $=0 \pm 100$	24546	C4-1/8-T0-601.F
R21	0698-3903	7		RESISTOR 8.6K.1\%.05W F TC=0 ± 10	28480	0696.3903
R22	0698-8827	4	2	RESISTOR 1M 1\%. 125 W F TC=0 ± 100	28480	0696.6627
R23	0698.6827	4		RESISTOR 1M 1\%. 125 W F TC=0 ± 100	28480	0696.6627
R2 4	0699.0071	6	1	RESISTOR $4.64 \mathrm{M} \mathrm{1} \mathrm{\% .125W} \mathrm{~F} \mathrm{TC=0} \pm 100$	28480	0699-0071
R2 5	0698-7273	2	1	RESISTOR $54.8 \mathrm{~K} 1 \%$. 05 W F TC $=0 \pm 100$	24546	C3-1/8-T0-3482-G
R2 6	0698-3903	7		RESISTOR 6, $6 \mathrm{~K} .1 \%$. 05 W F TC=0 ± 100	28480	0698-3903
R27	0698.3903	7		RESISTOR 6. $6 \mathrm{~K} .1 \% 05 \mathrm{~W}$ F TC=0 ± 100	28480	0698-3903
R2 8	0698-7265	2	1	RESISTOR 16. $2 \mathrm{~K} 1 \% .05 \mathrm{~W}$ F TC $=0 \pm 100$	24546	C3-1/8-T0-1622-G
R29	0698.7260	7		RESISTOR 10K 1\%.05W F TC=0 ± 100	24546	C3-1/8-T0-1002-G
R30	0698.7267	4	1	RESISTOR 19.6K 1\%.05W F TC=0 ± 100	24546	C3-1/8-T0-1962-G
R31	0698.7220	9		RESISTOR 2151%, O5W F TC $=0 \pm 100$	24546	C3-1/8-TO-215R-G
R32	0698.7250	5	2	RESISTOR 3.83K 1\%.05W F TC=0 ± 100	24546	C3-1/8-T0-3831-G
R33	0698-7284	5		RESISTOR $100 \mathrm{~K} 1 \% .05 \mathrm{~W}$ F TC $=0 \pm 100$	24546	C3-1/8-T0-1003.G
R3 4	0696.7247	0	1	RESISTOR 2.87K 1\%.05W F TC=0 ± 100	24546	C3-1/8-T0.2871.G
R35	0698.7250	5		RESISTOR 3.63K 1\%.05W F TC=0 ± 100	24546	C3-1/8-T0.3831.G
R3 6	0696.7264	5		RESISTOR 100K 1\%.05W F TC=0 ± 100	24546	C3-1/8-T0-1003-G
R37	0698.7232	3		RESISTOR 6811%. 05 W F TC=0 ± 100	24546	C3.1/8-T0.681R-G
R38	0696-8812	7	2	RESISTOR 1 1\%. 125 W F TC=0 ± 100	28480	0696.6612
R39	0696-6812	7		RESISTOR $11 \% .125 \mathrm{~W}$ F TC= 0 ± 100	28480	0696.6612
R40	0698.7229	8		RESISTOR 5111%. 05 W F TC=0 ± 100	24546	C3-1/8-T0-511R-G
R 41	0698-7215	2	1	RESISTOR $1331 \% .05 \mathrm{~W}$ F TC=0 ± 100	24546	C3-1/8-T0-133R-G
R42	0698-7232	3		RESISTOR 681 1\%. 05 W F TC=0 ± 100	24546	C3-1/8-T0.681R-G
$T 1$	9100.0425	0	1	TRANSFORMER RF; WIND 9T PRI \& 3T SEC	28480	9100.0423
U1	1826.0611	2	1	IC OP AMP GP DUAL 8-DIP.P	27014	LM2904N
U2	1826.0516	4	1	\checkmark REF 10. 5	27014	LH0070-1 H
U3	1826.0072	9	1	IC OP AMP LOW- BIAS-H.IMPD 10.99	07263	UA208M
X F 1	1251-1556	7	2	CONNECTOR-SGL CONT SKT.018-IN-BSC.SZ CRYSTAL. 10MHZ W/R2O TEMP SET (REPAIR	28480	1251-1556
V1	10811.60108	7	1	ONLY)	28480	10811.60108
	2260.0009	3	1	NUT-HEX-W/LKWR 4-40-THD.094.IN-THK	00000	$\begin{aligned} & \text { ORDER BY } \\ & \text { DESCRI PTI ON } \end{aligned}$

Table 6-1. Replaceable Parts (Continued)

Table 6-2. Manufacturers Code List

MFR. NO.	MANUFACTURER NAME	ADDRESS	ZIP CODE
00000	ANY SATISFACTORY SUPPLIER		
03888	KDI PYROFILM CORP	WHIPPANY, NJ	07981
04713	MOTOROLA SEMICONDUCTOR PRODUCTS	PHOENIX, AZ	85062
07263	FAIRCHILD SEMICONDUCTOR DIV	MOUNTAIN VIEW, CA	94042
24546	CORNING GLASS WORKS (BRADFORD)	BRADFORD, PA	16701
25088	SIEMENS CORP	ISELIN, NJ	08830
27014	NATIONAL SEMICONDUCTOR CORP	SANTA CLARA, CA	95051
28480	HEWLETT-PACKARD CO CORPORATE HQ	PALO ALTO, CA	94304
30983	MEPCO/ELECTRA CORP	SAN DIEGO, CA	92121
51642	CENTRE ENGINEERING INC	STATE COLLEGE, PA	16801
72982	ERIE TECHNOLOGICAL PRODUCTS INC	ERIE, PA	16512

Page Intentionally Left Blank

SECTION VII

MANUAL CHANGES

7-1. INTRODUCTION

7-2. This section contains information necessary to adapt this manual to apply to older instruments.

7-3. MANUAL CHANGES

7-4. This manual applies directly to Model 10811AIB Quartz Crystal Oscillators with serial prefix number 2028.

7-5. NEWER INSTRUMENTS

7-6. As engineering changes are made, newer instruments may have serial prefix numbers higher than those listed on the title page of this manual. The manuals for these instruments will be supplied with "Manual Changes" pages containing the required information to update the manual. Replace affected pages or modify existing manual information as described in the "Manual Changes" pages. See Section VI of this manual for a description of board identification. If the series number etched or stamped on any circuit board or circuit board assembly is higher than the above serial prefix number, "Manual Changes" pages should accompany the manual.

7-7. If the "Manual Change" pages are missing from any HP manual, the information can be supplied by any Hewlett-Packard Sales and Service Office listed at the back of this manual.

Page Intentionally Left Blank

SECTION VIII

SERVICE

8-1. INTRODUCTION

8-2. This section contains theory of operation, a detailed troubleshooting procedure, and a schematic diagram.

8-3. SCHEMATIC DIAGRAM SYMBOLS AND REFERENCE DESIGNATORS

8-4. Figure 8-1 shows the symbols used in the schematic diagram. At the bottom of Figure 8-1, the system for reference designators, assemblies, and subassemblies is shown.

8-5. REFERENCE DESIGNATORS

8-6. Theory of Operation

8-7. The overall theory of operation for the 10811A/B starts with paragraph 8-9. The detailed theory of operation starts with paragraph 8-13.

8-8. OVERALL BLOCK DIAGRAM THEORY

8-9. The 10811A/B Quartz Crystal Oscillator is an extremely stable, compact, low-power source of 10 MHz . The crystal, along with the oscillator, circuit buffer amplifier, and oven control circuits are all mounted inside a thermally insulated housing.

8-10. A detailed block diagram of the 10811A/B oscillator is shown in Figure 8-2.
$8-11$. The $10811 \mathrm{~A} / \mathrm{B}$ oscillator is divided into three sections with each section connected by a .010 -inch thick flexible circuit. Three small circuit boards are bonded to the flexible circuit to provide support in the areas where components are located. The arrangement allows the unit to be easily disassembled and operated in the disassembled state on the service bench.

8-12. The three sections can be divided into the following subsections (Figure 8-2):

1. Main Oscillator
2. Automatic Gain Control

Voltage Reference (+5.7 V and +6.4 V)
Output Impedance Matching Buffer
3. Output Buffer Amplifier

Oven Controller

Figure 8-1. Schematic Diagram Notes

- A GROUND POINT FOR TESTING OSCILLATOR. AGC,OUTPUT AMPLIFIER AND VOLTAGE REFERENCE.
- B GROUND POINT FOR TESTING OVEN CONTROLLER.
- B GROUND POINT FOR TESTING OVEN CONTROLLER.
- A AND B GROUNDS MAY BE TIED TOGETHER OR FLOATED AT DIFFERENT POTENTIALS EXTERNAL TO THE OSCILLATOR.

Figure 8-2. 10811A/B Overall Block Diagram

8-13. MAIN OSCILLATOR THEORY OF OPERATION

8-14. The 10811A/B oscillator is a Colpitts-type crystal oscillator which uses the crystal as the series inductor. Figure 8-3A shows the basic block diagram of a Colpitts-type oscillator. Figure 8-3B shows the basic equivalent components of the oscillator.

Figure 8-3A. Basic Colpitts- Type Oscillator

Figure 8-3B. Main Oscillator Schematic Design
$8-15$. Comparing Figure $8-3 A$ and $8-3 B$, we find $Y 1$ is the inductor, capacitor $C A$ is $C 8$ and $C B$ is the combination of C5, L2, C6, and L3. C5 is a dc blocking capacitor. Its reactance is very low, so the combination of these components can be redrawn as in Figure 8-4. The crystal Y1 is a "third overtone" crystal and is operated at 10 MHz . To keep the circuit from oscillating at the crystal's fundamental, or at a different overtone, the mode suppression network of C5, L2, C6, L3 appears capacitive only at frequencies between 9 MHz and 10.5 MHz . Below and above this frequency range, the network appears inductive. This does not allow the proper phase shift around the loop and thus suppresses oscillations at all frequencies other than 10 MHz . It should be noted that any reactance in series with the crystal will cause a change in frequency.

Figure 8-4. Mode Suppression

8-16. Figure 8-5 show the equivalent crystal circuits with the tuning capacitor C 1 .

Figure 8-5. Frequency Tuning Circuit

8-17. $\quad \mathrm{C} 1$ tuning capacitor is available from the top of the oscillator outer housing. The change in reactance of C1 allows the oscillator's frequency to be varied over a $20 \mathrm{~Hz}\left(2 \times 10^{-6}\right)$ range. C9 and C4 are dc blocking capacitors.

8-18. ELECTRONIC FREQUENCY CONTROL (EFC)

8-19. To allow for a fine tuning control, a varactor (CR1) is added in parallel with C1 tuning capacitor. See Figure 8-6. The varactor's capacitance depends on the dc voltage applied to it (reverse bias). The HC voltage range is +5 volts to -5 volts, giving a fine tuning range of $\approx 1 \mathrm{~Hz}\left(1 \times 10^{-7}\right)$. Since one side of the varactor is tied to a reference $(6.4 \mathrm{~V})$, a full +5 volts applied to the HC input will still keep CR1 reverse biased. C2 and C3 are again dc blocking capacitors to keep the HC current from flowing in to the crystal circuit. Note: if the HC input is not used, it must be connected to ground to keep any noise from modulating the HC line and causing frequency changes.

Figure 8-6. EFC

8-20. AUTOMATIC GAIN CONTROL (AGC)

8-21. The output for the AGC (and output amplifiers, discussed later) is taken across capacitor C10, and is applied to Q3. Since C10 is effectively in series with the crystal, the current passing through the crystal also passes through C10. The voltage across C10 is therefore proportional to the current through the crystal. As the output of the oscillator changes, the output of the peak detector circuit changes. This change in the AGC voltage changes the voltage applied to the base of Q1 and stops the impending output voltage change. A peak detector circuit formed by C12, CU, CR4 and CR5 is used to develop a dc voltage to control the crystal current. This negative control voltage forms the lower half of a voltage divider for the base of Q1 (R6 and R7). Controlling the bias current and the gain of Q1. Thus AGC action controls the output signal level. (See Figure 87).

Figure 8-7. Automatic Gain Control (AGC)
$8-22$. By adjusting the AGC voltage with R6 the amplitude for the output (at the base of Q3) can be set. R5 sets the AGC limit when $R 6$ is at its minimum resistance.

8-23. RF OUTPUT IMPEDANCE MATCHING AND OUTPUT BUFFER

8-24. The signal for the output amplifiers is taken from the same point as the AGC (across C10). The voltage is buffered by Q5 which is an impedance matching stage. Resistors R14 and R15 set the dc bias level while C14 allows the ac to bypass R14. The signal is then applied to the output buffer stage of Q9. Resistor R40 provides the 50Ω source impedance when transformed by T1. Typical gain from Q9 base to collector is approximately 2. See Figure 8-8.

Figure 8-8. Output Amplifiers

8-25. VOLTAGE REFERENCES (5.7V AND 6.4V)

8-26. Constant current diode CR2 feeds 1 mA to zener diode CR3 providing 6AV dc for the EFC varactor reference. R12 and C15 form a filter to attenuate noise from the zener diode. R13 provides current limiting for Q5 if the 5.7 V line is shorted. See Figure 8-9.

Figure 8-9. Voltage References

8-27. OVEN HEATER AND CONTROLLER THEORY

NOTE

In the following theory of operation the term OVEN MASS will be used to describe the cast aluminum block in which the crystal and crystal electronics are located. The exploded view of the oscillator shows the oven mass.

8-28. The purpose of the oven is to shield the oscillator crystal and electronics from normal ambient temperature changes. The oven controller does this by maintaining a constant oven temperature which is higher than the highest expected ambient temperature.

8-29. Three main blocks make up the oven circuits. See Figure 8-10.

1. Thermistor
2. Amplifier (controller)
3. Heaters

8-30. In the 10811A/B oven, a thermistor (RT1) is secured with epoxy into a hole in the oven mass. U3 is the amplifier and Q7 (not shown) and Q8 are the heaters. It is the thermistor that senses the oven mass temperature. Since it is in one leg of the bridge circuit, when the mass temperature changes slightly, a voltage change occurs across the bridge (RT1, R18, R19, R20, R21). Amplifier U3 boosts this voltage change and then uses it to control the current through Q7 and Q8. The current flowing through transistors Q7 and Q8 causes power dissipation in the form of heat, and it is this heat that warms the oven mass. Therefore, when the mass temperature starts to change, the heaters are told to adjust their power to cancel the impending temperature change.

8-31. WARM-UP: GENERAL OPERATION. If the oscillator has been off for several hours, the mass and thermistor will be at the ambient temperature. Assuming this is below the normal oven operating temperature (80 to $84^{\circ} \mathrm{C}$) the resistance at the thermistor RT1 is higher than that of R18 +R 20 and therefore $\mathrm{V}_{1}>\mathrm{V}_{2}$. This causes the output of U 3 to be $\approx(\mathrm{Vcc}-1.5 \mathrm{~V})$ and supply base current to Q8 through Q6. A separate circuit limits the collector current of Q8 and is described later. As the oven mass warms up, the thermistor's resistance gets lower causing both V2 and V1 to lower (V2 lowers because Vo lowers due to RT1 getting smaller). V1 decreases at a faster rate than V 2 and eventually $\mathrm{V}_{1}=\mathrm{V}_{2}$ when RT1 $=\mathrm{R} 20+\mathrm{R} 18$. At this time, the oven controller "cuts back" and begins to operate in a linear mode, adjusting the collector current in Q8 (and therefore the power dissipated in Q7 and Q8) to keep the oven precisely at its set temperature.

Figure 8-10. Oven Control Circuits
$8-32$. The purpose of R17 is mainly to reduce the power dissipated in the thermistor which causes it to self-heat above the oven operating temperature.

8-33. R38 and R39 in parallel provide a means of sensing the heater current, rH. During warm-up, the voltage across them, VH , is used in the current limit circuit (described later). During normal, linear operation, VH is essentially the feedback point for the oven controller loop.

8-34. Q6 is necessary primarily for the condition when the oscillator has been stored at $-55^{\circ} \mathrm{C}$. Since U3 (at $-55^{\circ} \mathrm{C}$) cannot supply enough base current for Q , Q 6 gives the added current gain required.

8-35. PRECISION VOLTAGE REFERENCE

$8-36$. U2 is a 10.0 V voltage reference. It provides a stable voltage source for the bridge and U1. A change in the bridge reference voltage changes the voltage across the thermistor and hence, the power it dissipates. See Figure 8-10.

8-37. OVEN CONTROLLER TURN-ON CURRENT LIMITING

8-38. Figure 8-11 shows the turn-on current limiting circuit. From an initial turn-on condition the thermistor senses the oven temperature to be low. To correct this situation the amplifier attempts to drive heavy amounts of current through Q7 and Q8 heaters. If allowed to continue this way, excessive current will flow; much more than is practical or necessary for warm-up. Amplifier U1 and associated components limit the current during warm-up to a practical value. When Vcc is applied to the oven, U1B forces VH to equal V3 by sinking the base current from Q6. By sensing Vcc, the circuit transforms the heater transistors into what appears to be a fixed heater resistance of 47Ω typical.

Figure 8-11. Turn-on Current Limit Circuit

8-39. HEATER TRANSISTOR BALANCE

8-40. Because heater transistors Q7 and Q8 are not equally spaced from the crystal, it is necessary to offset the power dissipation between the two transistors. Figure 8-12 shows a simplified schematic of this circuit. Amplifier U1A references a voltage divider across Vcc (R25, R26) and a divider referenced to the mid-point between the heater transistors. From this U1A controls the base current of Q7 to insure the Voltage at the mid-point between the heater transistors is a constant percentage of Vcc (V4 $\approx 0.57 \mathrm{Vcc} \pm 2 \%$).

Figure 8-12. Heater Transistor Balance Circuit.

8-42. Inspection

8-43. The 10811A/B should be inspected for indications of mechanical and electrical defects. Electronic components that show signs of overheating, leakage, frayed insulation, and other signs of deterioration should be checked and a thorough investigation of the associated circuitry should be made to verify proper operation. Mechanical parts should be inspected for excessive wear, looseness, misalignment, corrosion, and other signs of deterioration.

CAUTION

Proper static handling techniques must be employed when servicing semiconductor products. The voltage susceptibility of all IC and transistor families is well below levels commonly found in service environments. Exercise care and observe standard static precautions.

8-44. REPAIR

8-45. Printed Circuit Component Replacement

8-46. To prevent damage to the plating and the replacement component, apply heat sparingly, and work carefully. See CAUTION below.

8-47. Replacing Integrated Circuits

8-48. Following are two recommended methods of replacing integrated circuits:
a. SOLDER GOBBLER. This is the best method. Solder is removed from board by a soldering iron with a hollow tip connected to a vacuum source.
b. CLIP-OUT. Clip the leads as close to the component as possible. With a soldering iron and long nose pliers, carefully remove the leads from each hole. Then clean the holes.

CAUTION

The flex circuitry used in the 10811A/B oscillator requires special attention to soldering iron tip temperature and the length of time heat is applied. A low wattage ($\approx 25 \mathrm{~W}$) iron with a temperature control should be used. The tip temperature should be held below $500^{\circ} \mathrm{C}$. Care should be taken to be sure that the iron is not held on the circuit longer than necessary. Components should be removed by clipping the leads and then gently removing them. Do not use force when removing components. Following these precautions will insure that repairs can be easily made without damaging the flex circuit. Also, components should not be arbitrarily removed for troubleshooting or replacement unless there is reasonable confidence in the component's failure.

WARNING

THE OSCILLATOR'S INTERNAL OVEN MASS TEMPERATURE MAY BE AS HIGH AS $85^{\circ} \mathrm{C}\left(185^{\circ} \mathrm{F}\right)$. TO AVOID SERIOUS BURNS DO NOT REMOVE OSCILLATOR CIRCUITS AND/OR OVEN MASS ASSEMBLY FROM THE OUTER CAN UNTIL THE OSCILLATOR HAS SUFFICIENTLY COOLED (APPROXIMATELY ONE HOUR WITH BOTTOM COVER AND FOAM INSULATOR REMOVED). THE OUTER housing temperature is not a reliable indication of the INTERNAL TEMPERATURE.

8-49. The troubleshooting is arranged to allow the technician to quickly find the defective component(s) without unnecessary removal of components.

8-50. TROUBLESHOOTING

$8-51$. Failures in the $10811 \mathrm{~A} / \mathrm{B}$ can be divided into two sections:

1. Failure of the oscillator's circuits.
2. Failure in the oven controller circuits.

8-52. Failures in the oscillator circuits can be divided into the following problems:

1. No output.
2. Output amplitude is too low or high.
3. Output is distorted (contains excessive harmonics).
4. Output is off frequency (high or low).
5. Output has excessive noise or frequency stability does not meet specifications.
$8-53$. Poor frequency stability can be difficult to troubleshoot, and many times the oscillator is not at fault. Environmental conditions can affect stability and should be ruled out first.
$8-54$. Failures in the oven circuitry can be divided into the following problems:
6. No oven current (heat).
7. Excessive oven current (>600 mA).
8. Oven does not cut back after warm-up (this will open the thermal fuse if allowed to continue).
9. Oven does not regulate at the proper temperature. (This can be the cause for poor frequency stability).
8-55. Since the main oscillator and oven control power supply inputs are separate from each other, the defective circuit can be operated without applying power to the complete oscillator.

8-56. Determine which section is defective (oven or oscillator circuit), then proceed as described in the following troubleshooting section. The two circuits can be investigated separately.

1. Remove top cover and insulator described in:
a. 10811A paragraphs 8-59.
b. 10811B paragraphs $8-59$, step 4.

CAUTION

With the cover and foam insulator removed to thermal fuse cannot protect the oven circuit from thermal runaway. Caution should be used at all times.

8-57. DISASSEMBLY FOR TROUBLESHOOTING AND REPAIR

8 -58. Perform steps 1 through 3 for the 10811A oscillator and steps 4 and 5 for the 10811B oscillator. Once these steps are completed, follow steps 6 through 10 for both oscillators.
8 -59. For the 10811A Oscillator:
Step 1. Remove the three screws securing the bottom cover to the outer housing, and remove bottom cover.
Step 2. Remove the two screws securing the pc edge connector to the outer housing.
Step 3. Remove the foam sheet to expose the oven controller circuit board.
If troubleshooting the oven controller, stop here and go to paragraph 8-69. Go to Step 6 only if the trouble is in the oscillator circuit.

For the 10811B oscillator:

Step 4. Remove the four screws securing the cover to the outer housing.
Step 5. Disconnect the flexible circuit attached to the cover from the 7-pin connector mounted to the oven controller circuit board.
If troubleshooting the oven controller, stop here and go to paragraph 8-69. Continue only if the trouble is in the oscillator circuit.
The following steps will be performed for both oscillators.
Step 6. Using a long, small diameter tool, remove the complete oscillator assembly by inserting the tool into the tuning capacitor access hole (labeled FREQ. ADJUST) and pushing on the capacitor until the circuit can be grasped and removed freely.

CAUTION

10811A Only
Do not remove the circuits by pulling on the edge connector or flexible circuit. Damage to the flexible circuit may occur.

Step 7. Using a Pozidriv screwdriver ${ }^{+}$, remove the two screws securing the heater transistors to the oven mass. Remove the washers and transistor insulators.

NOTE
When reassembling the oven mass the heater transistor screws must be tightened to a torque of 44 Newton meters (5 in.-lbs.)
Step 8. Tilt the oven controller assembly back and remove the foam insulator between the oven controller assembly and the oven mass. Be careful not to break the two black thermistor wires attached to the oven controller assembly.
Step 9. Remove the eight screws (four each side) securing the covers to the oven mass assembly.
Step 10. Use two of the screws from each cover (removed in Step 9) to secure the boards to the mass for troubleshooting.

8-60. Go to paragraph 8-84, Oscillator Troubleshooting. When reassembling unit, reverse the above procedure.

8-61. SPECIAL TEST CONNECTOR FOR 10811A

$8-62$. The following paragraphs describe a special 15 -pin connector for use in troubleshooting, alignment and testing of the 10811A. The connector provides the following (See Figure 8-13):
a. Two separate input leads for the oscillator circuits power and the oven heaters and controller circuits.
b. $\quad 10 \mathrm{MHz}$ output through a female BNC.
c. Oven monitor output for connection to a voltmeter.
d. HC input connection to ground.

Figure 8-13. 10811A/B Special Test Connector
8-63. The following parts are required to construct the special test connector:
a. $\quad 15$-pin pc board connector (HP part number 1251-0494).
b. 6 banana plugs (HP part number 1251-0124).
c. BNC female connector with ground lug and nut.

BNC connector	1250-0083
Ground lug	$0360-0024$
lock washer	$2190-0016$
Nut	$2950-0001$

d. Approximately 6 -feet of 24 -gauge wire.
e. Labels for banana plugs.

8-64. To construct the connector:
a. Solder the center pin of the BNC connector to pin $1(\mathrm{~A})$ of the printed circuit connector; this is the 10 MHz output signal.
b. Bend the BNC ground lug to align with pin 2(B) of the printed circuit connector.
c. Solder one end of a 2 -foot length of wire to pin 2(B) of the printed circuit connector. Also solder the BNC ground lug to pin 2(B). This is the oscillator circuit common.
d. Solder one end of a 2 -foot length of wire to pin 3(C) of the printed circuit connector. This is the oscillator (+) supply.
e. Connect a jumper wire between pins $5(\mathrm{E})$ and $6(\mathrm{~F})$. This terminates the HC input.
f. Solder one end of a 2 -foot length of wire to pin 11(M). This is oven monitor output.
g. Solder one end of a 2 -foot length of wire to pin $14(\mathrm{R})$ of the printed circuit connector. This is the oven (+) supply.
h. Solder one end of two 2 -foot lengths of wire to pin $15(\mathrm{~S})$ of the printed circuit connector. This is the oven common.
i. Twist together one of the two wires connected to pin $15(\mathrm{~S})$ and the wire connected to pin $14(R)$. These are the oven controller power supply inputs.
j. Twist together the remaining wire connected to 15(S) and the wire connected to pin 11(M). This is the oven monitor output.
k. Twist together the two wires connected to pins 2(B) and 3(C). These are the oscillator supply input.
I. Connect one banana plug to the free end of each wire.
m. Label each banana plug as follows:

Wire connected to:
pin 2(B)
pin 3(C)
pin 11 (M)
pin 14(R)
pin 15(S) two wire

Label as:

oscillator supply (-)
oscillator supply (+)
oven monitor (+)
oven supply (+)
oven supply (-)
oven monitor (-)
n. Inspect the connector for poor solder joints, bent or damaged pins. Double check the labeling of the banana plugs to be sure the polarity markings are correct. If the voltages are connected the wrong way, damage to the 10811A may occur.

8-65. SPECIAL CABLE FOR THE 10811B.

8-66. A micon to BNC adaptor cable is available for the 10 MHz output signal. Order HP Part Number 05060-6116 (see Figure 8-13).

8-67. SPECIAL PARTS REPLACEMENT CONSIDERATIONS

8-68. Several mechanical parts and components must be replaced as a pair or require special consideration. They are:
a. Oven mass assembly and thermistor: If the thermistor (RT1) is found to be defective, the thermistor and oven mass assembly must be replaced as one item, HP Part Number 1081160106. Do not attempt to replace the thermistor alone.
b. Crystal and Temperature Set Resistor: The replacement crystal for Y 1 will be accompanied by the required temperature set resistor (R20) for the oven. This resistor must be installed with the new crystal. The crystal and R20 can be ordered using HP Part Number 1081160108. If the temperature set resistor is found to be defective only, it must be replaced with the same value and tolerance. If the temperature set resistor (R20) is unreadable, the value required can be determined by finding the oven temperature value marked on the crystal (Y1). The required resistor can then be determined from Table 8-1. When Y 1 is replaced, the nut which secures it to the oven mass should be tightened to a torque of 44 newton-metres (5 in .lbs.). This will insure maximum heat transfer without overstressing the crystal package.
c. 10811B Bottom cover: If any part of the 10811B bottom cover is found to be defective, the complete bottom cover must be replaced (HP Part Number 10811-60107). Once the insulating foam is attached to the bottom cover, feedthroughs and terminals cannot be replaced without impairing the heat insulating abilities of the bottom cover. Do not attempt to repair the cover or replace the flex circuit.

Table 8-1. Temperature Set Resistor List.

OVEN TEMP ${ }^{\circ} \mathrm{C}$	RESISTOR VALUE	PART NUMBER
80.0	1.33 K	0698-7239
80.1	1.29 K	0698-6981
80.2	1.25K	0698-6973
80.3	1.21K	0698-7238
80.4	1.18K	0698-3512
80.5	1.15K	0698-4469
80.6	1.10K	0698-7237
80.7	1.07K	0698-4196
80.8	1.04K	0698-6970
80.9	1.00K	0698-7236
81.0	968	0698-0096
81.1	931	0698-4465
81.2	909	0698-7235
81.3	866	0698-3495
81.4	825	0698-7234
81.5	787	0698-4014
81.6	750	0698-7233
81.7	715	0698-3700
81.8	681	0698-7232
81.9	649	0698-4460
82.0	619	0698-7231
82.1	600	0757-1100
82.2	562	0698-7230
82.3	511	0698-7229
82.4	500	0698-5852
82.5	464	0698-7228
82.6	422	0698-7227
82.7	383	0698-7226
82.8	348	0698-7225
82.9	316	0698-7224
83.0	287	0698-7223
83.1	261	0698-7222
83.2	215	0698-7220
83.3	196	0698-7219
83.4	162	0698-7217
83.5	121	0698-7214
83.6	100	0698-7212
83.7	61.9	0698-7207
83.8	34.8	0698-7201
83.9	0	jumper
84.0	0	jumper

d. Oven heater transistors Q7 and Q8: The replacement transistors for Q7 and Q8 have formed leads for easy installation (Part Number 10811-80001). Holding screws for Q7 and Q8 must also be torqued to a specific force of 44 newton-metres (5 in.-lbs.). There are several available Pozidriv torquing screwdrivers.

8-69. OVEN CONTROLLER TROUBLESHOOTING

8-70. General

8-71. The oven controller section consists of three major circuits and a 10 V voltage reference for increased stability of sensitive circuits. Figure 8-14 shows the major circuits and active components involved in their operation.

8-72. The temperature sense circuit monitors the temperature of the oven mass and reduces the power drawn by the oven heater transistors when the oven mass has reached operating temperature. After power cut-back, this circuit monitors the oven mass temperature and controls the power in the heaters to maintain the constant temperature. The thermistor (RT1) has a negative temperature coefficient. At room temperature the thermistor resistance is approximately 100 K ohms, while at operating temperature $\left(-82^{\circ} \mathrm{C}\right)$ the resistance is approximately 9 K ohms. Shorting the thermistor to oven common makes the oven mass appear too hot to the temperature sense circuit. This in turn causes the temperature sense circuit to shut off power to the oven heaters. This technique is used in the troubleshooting procedure.

8-73. The warm-up current limit circuit controls the maximum current the oven may draw during warmup (380 to 490 mA with 20 V dc oven input). This circuit is only active during the warm-up phase of the oven circuit operation.

Figure 8-14. Oven Controller Block Diagram

8-74. Normal Operation

8-75. When the oven is tested under normal conditions ($-25^{\circ} \mathrm{C}$ ambient temperature) it will initially draw 380 to 490 mA . After 5 to 10 minutes the oven current will start to drop. Over the next 10 to 15 minutes the oven current will fall to the 60 to 150 mA range where it will stabilize. The oven circuit should not oscillate.

WARNING

DO NOT OPERATE THE OVEN CIRCUITS WHEN THE OVEN MASS IS OUTSIDE OF THE OSCILLATOR INSULATED HOUSING. DOING SO WILL OVERHEAT THE OSCILLATOR CIRCUITS INSIDE THE OVEN MASS AND CAUSE PERMANENT DAMAGE. ALL OVEN TEST POINTS ARE AVAILABLE WITH THE OVEN MASS AND OVEN CONTROLLER CIRCUIT INSIDE THE HOUSING. WHEN OSCILLATOR COVER AND INSULATOR ARE REMOVED THERMAL FUSE WILL NOT PROTECT CIRCUIT FROM OVERHEATING. APPLY OVEN POWER ONLY WHEN ACTUALLY MAKING MEASUREMENTS FOR TROUBLESHOOTING OR AS DIRECTED IN TROUBLESHOOTING TREE, TABLE 8-2.

8-76. TROUBLESHOOTING

8-77. Table 8-2 is a troubleshooting' tree for the oven circuits. The troubleshooting procedure separates the different functional circuits by monitoring the oven supply current during different operating conditions. For example, if the warm-up current is excessive, this indicates a trouble in the warmup current limit circuit, or the current control and heater circuit. If shorting the thermistor reduces the current being drawn from the power supply, this indicates the current control circuit is operating and the problem is most likely in the warm-up current limit circuit.

8-78. As with most troubleshooting trees this is intended to be a guide to the trouble area. It is not a substitute for technical skill in isolating the faulty components.

8-79. Table 8-3 (next to schematic diagram) gives normal circuit voltages during warm-up, operation, and when thermistor RT1 is shorted to ground. Use this table during troubleshooting.

$8-80$. Troubleshooting Cautions

8-81. When oven current is excessive, turn on the power supply only long enough to make the necessary measurements. Do not leave power on if the oven is drawing excessive current. With the housing cover and foam insulator removed, the thermal fuse (F1) cannot protect the circuits in the oven mass from overheating and damage.

8-82. Flex Damage

8-83. If a tear in the flex circuit occurs, the tear can continue until a trace is broken. To stop a tear, use a pair of scissors and cut around the tear. DO NOT CUT A SHARP CORNER as this will cause a stress concentration allowing the tear to start again. A hole-punch may also be used. Punch a hole in the flex so as to remove the forward end of the tear.

Table 8-2. Oven Controller Troubleshooting Tree

8-84. OSCILLATOR TROUBLESHOOTING

$8-85$. The oscillator circuits are relatively simple and straightforward. The following paragraphs will briefly describe the major circuit areas, a troubleshooting outline, and some helpful suggestions to make the troubleshooting process easier. The oscillator consists of four sections. They are:

1. Oscillator Q1, Q2, and associated circuitry.
2. AGC Q3, CR4, CR5, and R6.
3. Output circuit Q5, Q9.
4. $\quad 5.7 \mathrm{~V}$ power supply CR2, CR3, and Q4.

The oscillator is the signal source. Its output level is controlled by the AGC. The 5.7V power supply provides an extra-stable clean voltage source for the oscillator circuits. The output circuits provide a high level signal capable of driving a 50 to 1 K ohm load.

8-86. NORMAL OPERATION

$8-87$. The output of the oscillator circuit at Q2(C) is a 10 MHz undistorted sine wave; with an amplitude of approximately 2.8 V p-p. The AGC voltage (measured at CR5-C13 junction) is approximately 1.5 V . The 10 MHz signal passes through Q 5 to $\mathrm{Q} 9(\mathrm{~B})$ at about the same level. The voltage gain of amplifier Q5 (base to collector) is approximately 2 with a 50 -ohm load on the output. The output of transformer T1 is approximately 1.5 V p-p. All10 MHz signals found in the $10811 \mathrm{~A} / \mathrm{B}$ will be undistorted sine waves unless otherwise noted in Table 8-4 (next to the schematic diagram).

8-88. OSCILLATOR TROUBLESHOOTING TECHNIQUES

8-89. When troubleshooting the oscillator section, remove the oven mass from the housing and the covers from the oven mass as described in paragraph 8-59. Connect 12 V to the oscillator section; use special connector described in paragraph 8-61 for 10811A, connect power to T1(1) and oscillator circuit common in 10811B. Set the power supply current limit to 60 mA . Do not apply power to the oven circuits!

8-90. Initial troubleshooting and probing should be done on the backside of the boards (trace side) while they are secured to the oven mass (see paragraph 8-59, step 10). This way the circuits are more easily handled. When the fault is isolated to a few components, the unit may then be disassembled for final troubleshooting and repair.

8-91. Helpful Hints

1. Most points in the oscillator circuits cannot be measured with a dc voltmeter. The reactance of the voltmeter probe and leads will load the circuit and give false readings. Instead, use an oscilloscope with a high input impedance probe for these measurements. Table 8-4 (oscillator section normal voltages) indicates when a dc voltmeter can be used.
2. Before reinstalling the oven mass into the housing, adjust the output amplitude (with R6) to 0.53 V into a 50 -ohm load. Although this value is slightly below normal, the output will increase slightly when the unit is reassembled and is at normal operating temperatures.
3. If a tear in the flex circuit occurs, go to paragraph 8-82 for repair instructions.

8-92. TROUBLESHOOTING INFORMATION

8 -93. Symptoms of failures in the oscillator sections will generally fall into one of the following categories:

1. No output.
2. Output amplitude is low or high.
3. Output is distorted (contain excessive harmonics).
4. Excessive drift of output frequency.
5. Time domain frequency stability (short-term stability) does not meet specifications.

8-94. Troubleshooting of these faults will be discussed in the following paragraphs.
8-95. NO OUTPUT. This is usually easy to repair by simple signal tracing. Localized faultfinding (to actual defective component) can be somewhat more difficult if the problem is in the main oscillator circuit (Q1, Q2, and AGC). If the fault appears to be in the oscillator section and does not yield to normal troubleshooting techniques, measure the AGC voltage at the junction of CR5C13 (see Note 7 on Table 8-4, Oscillator Normal Voltages). If this voltage appears normal, the problem may be a defective quartz crystal (Y1). To verify this possibility, obtain a $10 \mu \mathrm{H}$ (HP Part No. 9100-2265) and a $12 \mu \mathrm{H}$ inductor (9100-2242). Use the HP numbered parts as these have been tested in the circuit. On the oscillator board, remove the red and blue wires connecting the crystal to the board. Place the $12 \mu \mathrm{H}$ inductor in place of these wires. With 12 V applied to the circuit, adjust the FREQ ADJUST (C1), and amplitude control (R6) for a good sine wave signal.

NOTE
At some settings of C1 and/or R6, intermittent oscillations may appear. Some minor adjustment of C1 and/or R6 should clear this. If this fails, replace the $12 \mu \mathrm{H}$ inductor with the $10 \mu \mathrm{H}$ inductor and repeat the C1/R6 adjustment.

If replacing the crystal with an inductor produces oscillation, this is a very good indication of a defective crystal. When replacing crystal Y1, read paragraph 8-68(b), Special Parts Considerations. If the circuit will still not oscillate, the problem is most likely one of the oscillator circuit elements.

8-96. OUTPUT AMPLITUDE HIGH OR LOW. Many times this can be cured by the adjustment of R6 as described in paragraph 5-14. If the correct amplitude cannot be obtained with this adjustment, monitor the signal at $\mathrm{Q} 6(\mathrm{C})$ with an oscilloscope and set R 6 to obtain an amplitude of 2.8 V p-p. Then check Q5 and Q9 stages. If the R6 adjustment isn't effective, you should suspect the AGC circuitry (Q3, CR4, CR5, C5, C6, R5, R6, R7, or Q1).

8-97. OUTPUT DISTORTION. Check the distortion with a spectrum analyzer (see Table 4-2 step 2. for procedure). If the distortion products are harmonically related to 10 MHz , trace the signal to the distorting stage. If the distortion is not harmonically related to the 10 MHz output:

1. Check the mode suppression components of L2/C5 and/or L3/C6. These components suppress oscillations at all frequencies other than 10 MHz .
2. Check for spurious oscillations from the amplifier stages and oscillator transistors.

8-98. EXCESSIVE DRIFT OF OUTPUT FREQUENCY. When a quartz crystal oscillator has not been operated for a long period of time, or if it has been subjected to severe thermal or mechanical shock, the oscillator may take some time to stabilize. In most cases, the crystal will drift and then stabilize at or below the specified rate within a few days after being turned on. In isolated cases, depending on the amount of time the oscillator has been off and the environmental conditions it has experienced, the $10811 \mathrm{~A} / \mathrm{B}$ may take up to 1 week to reach the specified aging rate. This should be taken into consideration if the drift rate of the unit is out of specifications. If the unit has had sufficient time to stabilize but is still out of specification, the most likely cause of excessive drift is a defective crystal (Y1). If Y1 is to be replaced, read paragraph 8-68(b). Other possible causes are unstable C3 and/or C8.

8-99. TIME DOMAIN STABILITY (SHORT-TERM STABILITY) OUT OF SPECIFICATION. Measurement of time domain stability is somewhat difficult and exacting. If the $10811 \mathrm{~A} / \mathrm{B}$ fails this test, be sure no signal sources other than the test reference are operating near the measurement system, as these can cause interference with the measurement. Other sources of error are vibration, nearby electrical equipment, poor shielding, or motors that can radiate signals into the $10811 \mathrm{~A} / \mathrm{B}$. The failure to connect the HC input (to ground) can cause poor frequency stability as can a noisy voltage being used for the EFC control. If another oscillator is available (known to be good), verify the accuracy of the measurement system. This could save considerable troubleshooting time.

8-100. Two other possibilities external to the oscillator are the oven and oscillator power supplies. These must be stable in order for the circuits to function properly. See Table 1-1, Specifications, and paragraph 2-6 for power supply noise requirements.

8-101. When troubleshooting this condition, carefully monitor the output waveform. Check for distortion or intermittent distortion, small amplitude variations (there should be none), or spurious oscillations on the output signal. Use a spectrum analyzer for this test (see Table 4-2, step 3). These symptoms can be more readily traced than small frequency fluctuations.

8-102. Almost any of the circuits can cause poor short-term stability. However, the most probable cause is crystal Y 1 . Other possible causes are the oven controller circuit (keeps changing temperature) or defective frequency determining components (CR1, C1, C3, C8, or instability in the 5.7 V supply). Q1 and Q2 are also good suspects. Instability can also be caused by the AGC circuit, but this is usually visible as output amplitude variations or instability on the output waveform.

8-103. To check oven stability, allow the 10811A/B to operate normally away from drafts or sudden temperature changes. Allow the unit to warm up for at least 1-hour then connect a sensitive recorder or digital voltmeter to the OVEN MONITOR OUTPUT. Once the oven has stabilized, the monitor voltage should not vary more than 100-200 $\mu \mathrm{V}$ when measured over 3 - to 4 -minute periods. Causes of oven instability are temperature sensing elements RT1, U2, U3, and associated components.

Table 8-3. Oven Circuit Voltages-

VOLTAGE POINT	OVEN AT OPERATING TEMP.	OVEN COLD (JUST AFTER TURN-ON)	RT1 GROUNDED
Q6B	1.6	2.	.25
Q6C	11.4	11.4	11.4
Q6E	1.42 .4	0	
Q7B	12.5	1.3	11.9
Q7C	20.	1.7	20.
Q7E	11.4	20.	11.4
Q8B	1.	11.4	0
Q8C	11.4	1.3	11.4
Q8E	.07	1.4	0
U1 Pin 1	8.9	.23	8.9
U1 Pin 2	.07	1.8	0
U1 Pin 3	.2	.23	.2
U1 Pin 5	4.	.23	3.8
U1 Pin 6	4.	4.1	3.8
U1 Pin 7	3.3	4.1	1.5
U2 Pin 2	10.	4.8	10.
U3 Pin 6	3.5	10.	.5

*Voltage readings taken with oven supply voltage of 20 V dc and insulating foam and cover removed. Voltages are approximate and will vary slightly from unit-to-unit.

Table 8-4. Oscillator Section Normal Voltages (see Notes 1, 2, 3)

VOLTAGE POINT	NORMAL VOLTAGES		REMARKS
	AC (p-p)	DC	
C3/R3	1 to 4	-	Note 8
CR5/C13	-	-1.5	Notes 4 and 7
CR3(C)	0	6.3	Note 4
Q1(B)	1	.75	Note 8
Q1(C)	0	5.5	Note 4
Q1(E)	.9	.03	Note 8
Q2(B)	0	2.7	Note 4
Q2(C)	2.7	5.6	Note 8
Q2(E)	.06	2	Notes 4 and 5
Q3(B)	2.7	Note 8	
Q3(C)	0	5.6	Note 4
Q3(E)	2.4	11.8	Notes 4 and 6
Q4(B)	0	4.9	Note 4
Q4(C)	0	6.3	Note 4
Q4(E)	0	10.3	Note 4
Q5(B)	2.7	5.6	Note 8
Q5(C)	0	3.1	Notes 8 and 9
Q5(E)	2.8	11.8	Note 8
Q9(B)	2.8	2.6	Note 8, 9
Q9(C)	5.1	2.8	Note 8, 9
Q9(E)	2.5	11.8	Note 8

NOTES:

1. All voltages taken with 12 V oscillator supply.
2. Voltages are approximate and will vary slightly from unit-to-unit.
3. All ac voltages are sine waves except Q2(E) and Q3(E).
4. This dc voltage may be measured with a standard dc voltmeter. All other voltages should be measured with an oscilloscope and high impedance probe to minimize circuit loading.
5. Waveform is $\mathbf{u N}$ 立. 06 v .
6. Waveform is slightly flattened on the bottom.
7. This is the AGC voltage. Value shown is nominal with oscillator operating. If the oscillator is not oscillating, the AGC voltage will be -+2.5 V .
8. Measure both ac and dc voltages with an oscilloscope and a high impedance probe to minimize circuit loading.
9. AC voltage at $\mathrm{Q} 9(\mathrm{C})$ measured with 50 -ohm load on the output.

Page Intentionally Left Blank

Figure 8-15. Oven Controller Schematic Diagram

HEWLETT
PACKARD

REVISION PAGE

1. This page records a running history of all changes to this procedure.
2. Rev. A is used to identify the first issue. Subsequent changes to the procedure are identified with letters in the revision column.
3. Description column should include brief before/after details of each change and the page number involved.
4. Every page in this procedure must have, in order, the drawing number, latest revision letter and page \# of \# located in the page footer.

Rev.	PCO No.	Page No. Affected	Description of Change	Engineer	Date
A			AS ISSUED	L. Fries	11-30-90
B	2-21684	All	Complete Rewrite	D. Montgomery	01-20-94
C	2-22408	10,19-22	Corrected Osc. \# on pg. 10 . Added pages 19-22.	D. Montgomery	11-27-95
D	2-22774	$\begin{aligned} & \text { Sections } \\ & 12,13,14,15 \end{aligned}$	updated specs. for -60158/60159/60160; added 10811-60164	D. Montgomery	10-16-96
E	2-23023	17,25	Added 10811-60260	D. Montgomery	05-01-97
F	2-23915	15	Updated index.	D. Montgomery	06-10-99
G	2-24149	15,16	Updated index.	D. Montgomery	10-26-99
H	2-24428	Section 11	Add Phase Noise Specs for 10811-60219	D. Montgomery	07-17-00

Document Owner: PFS Production Manager or Designate

2TABLE OF CONTENTS

TABLE OF CONTENTS 2
1 10811D/E Crystal Oscillators 3
2 10811D/E Option 001 7
3 10811D/E Option 002 8
4 10811D/E Option 003 9
5 10811D/E Option 100 10
6 10811-60111 13
7 10811-60109 14
8 10811-60209 15
9 10811-60211 17
10 10811-60102 18
11 05071-60219 19
12 10811-60158 21
13 10811-60160 23
14 10811-60164 24
15 Index 26

Performance Specifications
 for
 HP 10811D/E
 Family Crystal Oscillators

1 10811D/E Crystal Oscillators

The performance specifications in section 1 also apply to the following options and subassemblies:

$10811-60120$	10811D Replacement
$10811-69120$	10811D "Blue Stripe" Replacement
$10811-60126$	10811E Replacement
$10811-69126$	10811E "Blue Stripe" Replacement
10811 E Option H40	
$10811-60132$	10811E Option H40 Replacement
$10811-69132$	10811E Option H40 "Blue Stripe" Replacement

1.1 Output Signal

1.1.1 Frequency: 10.000000 MHz .
1.1.2 Voltage: . $55 \mathrm{~V} \pm .05 \mathrm{~V}$ rms into 50Ω
1.1.3 Harmonic Distortion: $<-25 \mathrm{dBc}$.
1.1.4 Spurious Phase Modulation: <-100 dBc (discrete sidebands 10 Hz to 25 kHz).

1.2 Frequency Adjustment

1.2.1 Coarse Tuning Range: $> \pm 1 \times 10^{-6}(\pm 10 \mathrm{~Hz})$.
1.2.2 Electronic Frequency Control (EFC): $\geq 1 \times 10^{-7}(1 \mathrm{~Hz})$ total for control. range of -5 V to +5 V

1.3 Frequency Stability

1.3.1 Long Term Stability (Aging Rate):

Aging rate (long term frequency stability is defined as the absolute value (magnitude) of the fractional frequency change with time. An observation time sufficiently long to reduce the effects of random noise to an insignificant value is implied. Frequency changes due to environmental effects must be considered separately.
1.3.1.1 $<5 \times 10^{-10} /$ day after 24 hour warm up when:
1.3.1.1.1 oscillator off time was less than 24 hours and
1.3.1.1.2 oscillator aging rate was $<5 \times 10^{-10} /$ day prior to turn off.
1.3.1.2 $<5 \times 10^{-10} /$ day in less than 30 days of continous operation for off time of greater than 24 hours.
1.3.1.3 $<1 \times 10^{-7} /$ year for continous operation (Typical $1 \times 10^{-8} /$ year after 1 year)

1.4 Time Domain Stability

Time domain stability $\left(\sigma_{y}(\tau)\right.$) is defined as the two sample deviation of fractional fluctuations due to random noise in the oscillator. The measurement bandwidth is 100 kHz . See NBS Monograph 140 for measurement details.

Averaging Time (seconds) τ	Stability $\sigma_{y}(\tau)$
.001	$<1.5 \times 10^{-10}$
.01	$<1.5 \times 10^{-11}$
.1	$<5.0 \times 10^{-12}$
1	$<5.0 \times 10^{-12}$
10	$<5.0 \times 10^{-12}$
100	$<1.0 \times 10^{-11}$
(Typical) 1000	$<1.0 \times 10^{-11}$

1.5 Frequency Domain Stability (Phase Noise)

Frequency domain stability is defined as the single sideband noise to signal ratio per Hertz of bandwidth (a power spectral density). This ratio is analogous to a sprectrum analyzer display of the carrier versus either phase modulation sideband. See NBS Monograph 140 for measurement details.

Offset from Signal (Hz)	Phase Noise (dBc)
1	<-100
10	<-130
100	<-150
1000	<-157
10000	<-160

1.6 Warm Up

1.6.1 $<5 \times 10^{-9}$ of final value 10 minutes after turn on when:
1.6.1.1 oscillator is operated in a $25^{\circ} \mathrm{C}$ environment with 20 Vdc oven supply voltage,
1.6.1.2 oscillator off time was less than 24 hours,
1.6.1.3 oscillator aging rate was $<5 \times 10^{-10}$ / day prior to turn off..
1.6.1.4 Final value is defined as oscillator frequency 24 hours after turn on.

1.7 Environmental Sensitivity

1.7.1 Temperature

1.7.1.1 Frequency Change: $<4.5 \times 10^{-9}$ from $0^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$.
1.7.1.2 Operating Range: $0^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$.
1.7.1.3 Storage Range: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
1.7.2 Load: $<5 \times 10^{-10}$ for $\pm 10 \%$ change in 50Ω load on output.
1.7.3 Power Supply
1.7.3.1 Oscillator Supply: $<2 \times 10^{-10}$ for 1% change.
1.7.3.2 Oven Supply: $<2.5 \times 10^{-10}$ ($<1 \times 10^{-10}$ typical) for 10% change.
1.7.4 Gravitational Field: $<4 \times 10^{-9}$ for 2 g static shift (180° change in position).
1.7.5 Magnetic Field: Sidebands $<-90 \mathrm{dBc}$ for .1 mTesla (1 Gauss) field at 100 Hz
1.7.6 Humidity (typical): $<1 \times 10^{-9}$ for 95% relative humidity at $40^{\circ} \mathrm{C}$.
1.7.7 Shock (survival): $30 \mathrm{~g}, 11 \mathrm{~ms}, 1 / 2$ sinwave.
1.7.8 Altitude (typical): $<2 \times 10^{-9}$ for 0 to $50,000 \mathrm{ft}$.

1.8 Power Requirements

1.8.1 Oscillator Circuit:
1.8.1.1 11.0 to 13.5 Vdc .
1.8.1.2 30 mA typical, 40 mA .
1.8.1.3 $<100 \mu \mathrm{~V}$ ripple and noise
1.8.2 Oven Circuit:
1.8.2.1 20 to 30 Vdc
1.8.2.2 480 mA at 20 V to 720 mA at 30 V max. (turn on load is constant and 42Ω minimum)
1.8.2.3 Steady state power drops to approximately 2 W at $25^{\circ} \mathrm{C}$ in still air at 20 V .

2 10811D/E Option 001

The performance specifications in section 2 also apply to the following subassemblies:

10811-60121	10811D Option 001 Replacement
$10811-60127$	10811E Option 001 Replacement

The performance specifications for the 10811D/E Option 001 are the same as the 10811D/E with the following exceptions:

2.1 Aging Rate:

Aging rate (long term frequency stability is defined as the absolute value (magnitude) of the fractional frequency change with time. An observation time sufficiently long to reduce the effects of random noise to an insignificant value is implied. Frequency changes due to environmental effects must be considered separately.
2.1.0.1 $<1 \times 10^{-10} /$ day after 24 hour warm up when:
2.1.0.1.1 oscillator off time was less than 24 hours and
2.1.0.1.2 oscillator aging rate was $<1 \times 10^{-10} /$ day prior to turn off.
2.1.0.2 $<1 \times 10^{-10}$ / day in less than 30 days of continous operation for off time of greater than 24 hours.
2.1.1 < 3.6 $\times 10^{-7}$ / year for continous operation.

3 10811D/E Option 002

The performance specifications in section 3 also apply to the following subassemblies:

$10811-60122$	10811D Option 002 Replacement
$10811-60128$	10811E Option 002 Replacement

The performance specifications for the 10811D/E Option 002 are the same as the 10811D/E with the following exceptions:

3.1 Frequency Domain Stability (Phase Noise)

Frequency domain stability is defined as the single sideband noise to signal ratio per Hertz of bandwidth (a power spectral density). This ratio is analogous to a sprectrum analyzer display of the carrier versus either phase modulation sideband. See NBS Monograph 140 for measurement details

Offset from Signal (Hz)	Phase Noise (dBc)	
1	<-103	
10	<-133	
100	<-153	
1000	<-162	
10000	<-162	

4 10811D/E Option 003

The performance specifications in section 4 also apply to the following subassemblies

$10811-60123$	10811D Option 003 Replacement
$10811-60129$	10811E Option 003 Replacement

The performance specifications for the 10811D/E Option 003 are the same as the 10811D/E with the following exceptions:

4.1 Aging Rate:

Aging rate (long term frequency stability is defined as the absolute value (magnitude) of the fractional frequency change with time. An observation time sufficiently long to reduce the effects of random noise to an insignificant value is implied. Frequency changes due to environmental effects must be considered separately.
4.1.0.1 $<1 \times 10^{-10} /$ day after 24 hour warm up when:
4.1.0.1.1 oscillator off time was less than 24 hours and
4.1.0.1.2 oscillator aging rate was $<1 \times 10^{-10} /$ day prior to turn off.
4.1.0.2 $<1 \times 10^{-10}$ / day in less than 30 days of continous operation for off time of greater than 24 hours.
4.1.0.3 < 3.6×10^{-7} / year for continous operation.

4.2 Frequency Domain Stability (Phase Noise)

Frequency domain stability is defined as the single sideband noise to signal ratio per Hertz of bandwidth (a power spectral density). This ratio is analogous to a sprectrum analyzer display of the carrier versus either phase modulation sideband. See NBS Monograph 140 for measurement details

Offset from Signal (Hz)	Phase Noise (dBc)
1	<-103
10	<-133
100	<-153
1000	<-162
10000	<-162

5 10811D/E Option 100

The performance specifications in section 5 also apply to the following subassemblies:

10811-60125	10811D Option 100 Replacement
10811-60131	10811E Option 100 Replacement
10811E Option H41	
10811-60133	10811E Option H41 Replacement
$10811-69133$	10811E Option H41 "Blue Stripe" Replacement

The performance specifications for the 10811D/E Option H41 are the same as the $10811 \mathrm{D} / \mathrm{E}$ with the following exceptions

5.1 Frequency Adjustment

5.1.1 Coarse Tuning Range: $> \pm 8 \times 10^{-7}(\pm 8 \mathrm{~Hz})$.

5.1.2 Electronic Frequency Control (EFC): Not Specified

5.2 Frequency Stability

5.2.1 Long Term Stability (Aging Rate):

Aging rate (long term frequency stability is defined as the absolute value (magnitude) of the fractional frequency change with time. An observation time sufficiently long to reduce the effects of random noise to an insignificant value is implied. Frequency changes due to environmental effects must be considered separately.
5.2.1.1 < $1.5 \times 10^{-9} /$ day after 24 hour warm up when:
5.2.1.1.1 oscillator off time was less than 24 hours and
5.2.1.1.2 oscillator aging rate was $<1.5 \times 10^{-9} /$ day prior to turn off.
5.2.1.2 < $1.5 \times 10^{-9} /$ day in less than 30 days of continous operation for off time of greater than 24 hours.
5.2.1.3 $<5.5 \times 10^{-7} /$ year for continous operation.

5.3 Time Domain Stability

Time domain stability $\left(\sigma_{y}(\tau)\right)$ is defined as the two sample deviation of fractional fluctuations due to random noise in the oscillator. The measurement bandwidth is 100 kHz . See NBS Monograph 140 for measurement details

Averaging Time (seconds) τ	Stability $\sigma_{y}(\tau)$
.001	Not Specified
.01	Not Specified
.1	Not Specified
1	$<1.0 \times 10^{-11}$
10	Not Specified
100	Not Specified
1,000	Not Specified

5.4 Frequency Domain Stability (Phase Noise)

Frequency domain stability is defined as the single sideband noise to signal ratio per Hertz of bandwidth (a power spectral density). This ratio is analogous to a sprectrum analyzer display of the carrier versus either phase modulation sideband. See NBS Monograph 140 for measurement details.

Offset from Signal (Hz)	Phase Noise (dBc)
1	Not Specified
10	Not Specified
100	Not Specified
1000	<-155
10000	Not Specified

5.5 Warm Up

5.5.1 $<6 \times 10^{-9}$ of final value 10 minutes after turn on when:
5.5.1.1 oscillator is operated in a $25^{\circ} \mathrm{C}$ environment with 20 Vdc oven supply voltage,
5.5.1.2 oscillator off time was less than 24 hours,
5.5.1.3 oscillator aging rate was $<1.5 \times 10^{-9}$ / day prior to turn off.
5.5.1.4 Final value is defined as oscillator frequency 24 hours after turn on.

5.6 Temperature

5.6.1 Frequency Change: $<7 \times 10^{-9}$ from $0^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$.

5.7 Power Supply

5.7.1 Oscillator Supply: $<1 \times 10^{-8}$ for 1% change.
5.7.2 Oven Supply: $<1 \times 10^{-9}$ for 10% change.

5.8 Gravitational Field

Not Specified

5.9 Magnetic Field

Not Specfied

6 10811-60111

The performance specifications in section 6 also apply to the following subassemblies:

10811-69001
10811-60111 "Blue Stripe" Replacement

The performance specifications for the 10811-60111 are the same as the 10811D/E with the following exceptions:

6.1 Time Domain Stability

Time domain stability $\left(\sigma_{y}(\tau)\right)$ is defined as the two sample deviation of fractional fluctuations due to random noise in the oscillator. The measurement bandwidth is 100 kHz . See NBS Monograph 140 for measurement details.

Averaging Time (seconds) τ	Stability $\sigma_{y}(\tau)$.001 Not Specified
.01	Not Specified
.1	Not Specified
1	$<1.0 \times 10^{-11}$
10	Not Specified
100	Not Specified
1,000	Not Specified

6.2 Frequency Domain Stability (Phase Noise)

Not Specified.

6.3 Gravitational Field

Not Specified

6.4 Magnetic Field

Not Specified

7 10811-60109

The performance specifications for the 10811-60109 are the same as the 10811D/E with the following exceptions:

7.1 Time Domain Stability

Time domain stability $\left(\sigma_{y}(\tau)\right)$ is defined as the two sample deviation of fractional fluctuations due to random noise in the oscillator. The measurement bandwidth is 100 kHz . See NBS Monograph 140 for measurement details.

Averaging Time (seconds) τ	Stability $\sigma_{y}(\tau)$
.001	$<1.5 \times 10^{-10}$
.01	$<1.5 \times 10^{-11}$
.1	$<5.0 \times 10^{-12}$
1	$<2.5 \times 10^{-12}$
10	$<5.0 \times 10^{-12}$
100	$<1.0 \times 10^{-11}$
1,000	$<1.0 \times 10^{-11}$

7.2 Frequency Domain Stability (Phase Noise)

Frequency domain stability is defined as the single sideband noise to signal ratio per Hertz of bandwidth (a power spectral density). This ratio is analogous to a sprectrum analyzer display of the carrier versus either phase modulation sideband. See NBS Monograph 140 for measurement details

Offset from Signal (Hz)	Phase Noise (dBc)
1	<-95
10	<-120
100	<-140
1000	<-157
10000	<-160

8 10811-60209

The performance specifications for the 10811-60209 are the same as the 10811D/E with the following exceptions:

8.1 Time Domain Stability

Time domain stability $\left(\sigma_{y}(\tau)\right)$ is defined as the two sample deviation of fractional fluctuations due to random noise in the oscillator. The measurement bandwidth is 100 kHz . See NBS Monograph 140 for measurement details.

Averaging Time (seconds) τ	Stability $\sigma_{y}(\tau)$.001 Not Specified
.01	Not Specified
.1	Not Specified
1	$<1.0 \times 10^{-11}$
10	Not Specified
100	Not Specified
1,000	Not Specified

8.2 Frequency Domain Stability (Phase Noise)

Frequency domain stability is defined as the single sideband noise to signal ratio per Hertz of bandwidth (a power spectral density). This ratio is analogous to a sprectrum analyzer display of the carrier versus either phase modulation sideband. See NBS Monograph 140 for measurement details.

Offset from Signal (Hz)	Phase Noise (dBc)
1	<-103
10	<-133
100	<-153
1000	<-162
10000	<-162

8.3 Temperature

8.3.1 Frequency Change: $\leq 7.0 \times 10^{-9}$ from $0^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$.

8.4 Gravitational Field

8.4.1 Not Specified

8.5 Magnetic Field

8.5.1 Not Specified

9 10811-60211

The performance specifications in section 9 also apply to the following subassemblies:

$10811-60260$	$10811-60160$ with improved aging

The performance specifications for the 10811-60211 are the same as the 10811D/E with the following exceptions:

9.1 Time Domain Stability

Time domain stability ($\sigma_{y}(\tau)$) is defined as the two sample deviation of fractional fluctuations due to random noise in the oscillator. The measurement bandwidth is 100 kHz . See NBS Monograph 140 for measurement details

Averaging Time (seconds) τ	Stability $\sigma_{y}(\tau)$
.001	Not Specified
.01	Not Specified
.1	Not Specified
1	$<1.0 \times 10^{-11}$
10	Not Specified
100	Not Specified
1,000	Not Specified

9.2 Frequency Domain Stability (Phase Noise)

9.2.1 Not Specified

9.3 Aging Rate:

Aging rate (long term frequency stability is defined as the absolute value (magnitude) of the fractional frequency change with time. An observation time sufficiently long to reduce the effects of random noise to an insignificant value is implied. Frequency changes due to environmental effects must be considered separately.
9.3.0.1 $<1 \times 10^{-10} /$ day after 24 hour warm up when:
9.3.0.1.1 oscillator off time was less than 24 hours and
9.3.0.1.2 oscillator aging rate was $<1 \times 10^{-10} /$ day prior to turn off.
9.3.0.2 < 1×10^{-10} / day in less than 30 days of continous operation for off time of greater than 24 hours.
9.3.0.3<3.6 $\times 10^{-7} /$ year for continous operation.

10 10811-60102

The performance specifications for the 10811-60102 are the same as the $10811 \mathrm{D} / \mathrm{E}$ with the following exceptions:

10.1 Temperature

10.1.1 Frequency Change: $<7.0 \times 10^{-9}$ from $0^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$

11 05071-60219

The performance specifications in section 11 also apply to the following options and subassemblies:

The performance specifications for the 05071-60219 are the same as the 10811D/E with the following exceptions:

11.1 Frequency Adjustment

11.1.1 Coarse Tuning Range: $> \pm 5 \times 10^{-7}(\pm 5 \mathrm{~Hz})$.
11.1.2 Electronic Frequency Control (EFC): ${ }^{3} \pm 2.5 \times 10^{-7}(\pm 2.5 \mathrm{~Hz})$ for control. range of -5 V to +5 V

11.2 Time Domain Stability

Time domain stability ($\mathrm{s}_{\mathrm{y}}(\mathrm{t})$) is defined as the two sample deviation of fractional fluctuations due to random noise in the oscillator. The measurement bandwidth is 100 kHz . See NBS Monograph 140 for measurement details.

Averaging Time (seconds) t	Stability $\mathrm{s}_{\mathrm{y}}(\mathrm{t})$
.001	$<1.5 \times 10^{-10}$
.01	$<1.5 \times 10^{-11}$
.1	$<4.5 \times 10^{-12}$
1	$<2.5 \times 10^{-12}$
10	$<5.0 \times 10^{-12}$
100	$<1.0 \times 10^{-11}$
(Typical) 1000	$<1.0 \times 10^{-11}$

11.3 Frequency Domain Stability (Phase Noise)

Frequency domain stability is defined as the single sideband noise to signal ratio per Hertz of bandwidth (a power spectral density). This ratio is analogous to a sprectrum analyzer display of the carrier versus either phase modulation sideband. See NBS Monograph 140 for measurement details.

Offset from Signal (Hz)	Phase Noise (dBc)	
1	<-100	
10	<-137	
100	<-150	
1000	<-155	
10000	<-155	

1210811-60158

The performance specifications in section 12 also apply to the following options and subassemblies:

$10811-60159$	$10811-60158$ with shock mount studs

The performance specifications for the 10811-60158/60159 are the same as the 10811D/E with the following exceptions:

12.1 Frequency Adjustment

12.1.1 Coarse Tuning Range: $> \pm 5 \times 10^{-7}(\pm 5 \mathrm{~Hz})$.
12.1.2 Electronic Frequency Control (EFC): $> \pm 2.0 \times 10^{-7}(\pm 2.5 \mathrm{~Hz})$ for control. range of -5 V to +5 V

12.2 Frequency Stability

12.2.1 Long Term Stability (Aging Rate):

Aging rate (long term frequency stability is defined as the absolute value (magnitude) of the fractional frequency change with time. An observation time sufficiently long to reduce the effects of random noise to an insignificant value is implied. Frequency changes due to environmental effects must be considered separately.
12.2.1.1 < $2.5 \times 10^{-10} /$ day after 24 hour warm up when:
12.2.1.1.1 oscillator off time was less than 24 hours and
12.2.1.1.2 oscillator aging rate was $<2.5 \times 10^{-10} /$ day prior to turn off. 12.2.1.2 $<2.5 \times 10^{-10} /$ day in less than 30 days of continous operation for off time of greater than 24 hours.
12.2.1.3<1×10-7/year for continous operation (Typical $1 \times 10^{-8} /$ year after 1 year)

12.3 Time Domain Stability

Time domain stability $\left(\sigma_{y}(\tau)\right)$ is defined as the two sample deviation of fractional fluctuations due to random noise in the oscillator. The measurement bandwidth is 100 kHz . See NBS Monograph 140 for measurement details.

Averaging Time (seconds) τ	Stability $\sigma_{y}(\tau)$
.001	$<1.5 \times 10^{-10}$
.01	$<1.5 \times 10^{-11}$
.1	$<5.0 \times 10^{-12}$
1	$<9.8 \times 10^{-13}$
10	$<5.0 \times 10^{-12}$
100	$<1.0 \times 10^{-11}$
(Typical) 1000	$<1.0 \times 10^{-11}$

12.4 Frequency Domain Stability (Phase Noise)

Frequency domain stability is defined as the single sideband noise to signal ratio per Hertz of bandwidth (a power spectral density). This ratio is analogous to a sprectrum analyzer display of the carrier versus either phase modulation sideband. See NBS Monograph 140 for measurement details.

Offset from Signal (Hz)	Phase Noise (dBc)
1	<-95
10	<-125
100	<-135
1000	<-145
10000	<-150

12.5 Environmental Sensitivity

12.5.1 Gravitational Sensitivity: Not Specified

12.6 Power Requirements

12.6.1 Oven Circuit:

12.6.1.1 12 to 30 Vdc
12.6.1.2 11 W max.at turn on
12.6.1.3 Steady state power drops to approximately 2 W at $25^{\circ} \mathrm{C}$ in still air at 20 V .

13 10811-60160

The performance specifications in section 13 also apply to the following options and subassemblies:

The performance specifications for the 10811-60160 are the same as the 10811-60111 with the following exceptions:

13.1 Frequency Adjustment

13.1.1 Coarse Tuning Range: $> \pm 5 \times 10^{-7}(\pm 5 \mathrm{~Hz})$.
13.1.2 Electronic Frequency Control (EFC): $> \pm 2.0 \times 10^{-7}(\pm 2.5 \mathrm{~Hz})$ for control. range of -5 V to +5 V

13.2 Power Requirements

13.2.1 Oven Circuit:

13.2.1.1 12 to 30 Vdc
13.2.1.2 11 W max.at turn on
13.2.1.3 Steady state power drops to approximately 2 W at $25^{\circ} \mathrm{C}$ in still air at 20 V .

14 10811-60164

The performance specifications in section 6 also apply to the following subassemblies:

The performance specifications for the 10811-60164 are the same as the $10811 \mathrm{D} / \mathrm{E}$ with the following exceptions:

14.1 Output Signal

14.1.1 Harmonic Distortion: Not Specified
14.1.2 Spurious Phase Modulation: Not Specified

14.2 Frequency Adjustment

14.2.1 Coarse Tuning Range: $> \pm 5 \times 10^{-7}(\pm 5 \mathrm{~Hz})$.
14.2.2 Electronic Frequency Control (EFC): $> \pm 2.0 \times 10^{-7}(\pm 2.5 \mathrm{~Hz})$ for control. range of -5 V to +5 V

14.3 Frequency Stability

14.3.1 Long Term Stability (Aging Rate):

Aging rate (long term frequency stability is defined as the absolute value (magnitude) of the fractional frequency change with time. An observation time sufficiently long to reduce the effects of random noise to an insignificant value is implied. Frequency changes due to environmental effects must be considered separately.
14.3.1.1 < $1 \times 10^{-8} /$ day

14.4 Time Domain Stability

Not Specified
14.5 Frequency Domain Stability (Phase Noise)

Not Specified.

14.6 Warm Up

Not Specified

14.7 Environmental Sensitivity

Not Specified
14.8 Power Requirements

14.8.1 Oven Circuit:

14.8.1.1 12 to 30 Vdc
14.8.1.2 11 W max.at turn on
14.8.1.3 Steady state power drops to approximately 2 W at $25^{\circ} \mathrm{C}$ in still air at 20 V .

15 Index

Product/Assembly Number	Description	Status	$\begin{gathered} \hline \text { PCO } \\ \text { Number } \end{gathered}$	Section Number
05071-60219	5071A, SCD only			11
05071-69219	05071-60219 "Blue Stripe" Exchange			11
10811-60102	10811E \#H40 \& H41 subassembly	Obsolete	2-24149	10
10811-60109	5065A/5061B, SCD only			7
10811-60111	Counter products. SCD only			6
10811-60120	10811D Replacement			1
10811-60121	10811D \#001 Replacement	Obsolete	2-23915	2
10811-60122	10811D \#002 Replacement	Obsolete	2-23915	3
10811-60123	10811D \#003 Replacement	Obsolete	2-23915	4
10811-60125	10811D \#100 Replacement	Obsolete	2-21686	5
10811-60126	10811E Replacement			1
10811-60127	10811E \#001 Replacement	Obsolete	2-23915	2
10811-60128	10811E \#002 Replacement	Obsolete	2-23915	3
10811-60129	10811E \#003 Replacement	Obsolete	2-23915	4
10811-60131	10811E \#100 Replacement	Obsolete	2-21931	5
10811-60132	10811E \#H40 Replacement	Obsolete	2-24149	1
10811-60133	10811E \#H41 Replacement	Obsolete	2-22396	5
10811-60152	10811D \#023 subassembly	Obsolete	2-21931	
10811-60153	10811E \#023 subassembly	Obsolete	2-21931	
10811-60154	Untested 10811E subassembly			
10811-60155	Untested 10811D subassembly			
10811-60158	Sealed osc. with -60005 brd. set			12
10811-60159	Sealed osc. with -60005 brd. set/studs			12
10811-60160	"D" type osc. with -60005 brd. set			13
10811-60164	Osc-159 Rdcd Spec		2-22774	14
10811-60209	Spokane Div Only	Obsolete	2-21931	8
10811-60211	Counter products, SCD only			9
10811-60260	Improved Aging		2-23023	9
10811-69001	10811-60111 "Blue Stripe" Exchange			6
10811-69120	10811D "Blue Stripe" Exchange			1
10811-69126	10811E "Blue Stripe" Replacement			1
10811-69132	10811E \#H40 "Blue Stripe" Exchange	Obsolete	2-24149	1
10811-69133	10811 E \#441 "Blue Stripe" Exchange	Obsolete	2-22396	5
10811D				1
10811D \#001	Improved aging	Obsolete	2-23915	2
10811D \#002	Improved phase noise	Obsolete	2-23915	3

filename: (90027-1) (R. Mejia-Norton October 26, 1999 10:27 AM)

Product/Assembly Number	Description	Status	PCO Number	Section Number
10811D \#003	Improved aging and phase noise	Obsolete	$2-23915$	4
10811D \#023	10.23 MHz	Obsolete	$2-21677$	
10811D \#100	Reduced Spec	Obsolete	$2-21686$	5
10811E				1
10811E \#001	Improved aging	Obsolete	$2-23915$	2
10811E \#002	Improved phase noise	Obsolete	$2-23915$	3
10811E \#003	Improved aging and phase noise	Obsolete	$2-23915$	4
10811D \#023	10.23 MHz	Obsolete	$2-21677$	
$10811 \mathrm{E} \# 100$	Reduced Spec	Obsolete	$2-21686$	5
10811 E \#H40		Obsolete	$2-24149$	1
10811 E \#H41		Obsolete	$2-22396$	5

305/315/355 SERIES CARD EDGE CONNECTOR

FEATURES

- 305/355 Series CSA Approved and UL Recognized
- 315 Series UL Recognized
- 156 (3.96) Contact Spacing x .140 (3.56) Row Spacing
- Accepts 062 (1.57) Nominal Thickness P.C. Board
- Low Profile Insulator Body, . 460 (11.68)
- Contact Termination Options include P.C. Tail, Wire Hole \& Extender Board Bends
- Large Variety of Mounting Options
- Pre-assembled Card Guides Available
- Accepts Between Contact and In-Contact Polarizing Keys

SPECIFICATIONS

- Insulator Material: Thermoplastic Polyester, UL 94V-0
- Contact Material: Copper, Nickel, Tin Alloy CA-725
- Contact Plating: Gold on the Mating Area, Tin on the Contact Tails, Nickel Underplate
- Current Rating: 5 Amperes Continuous
- Contact Resistance: 10 Milliohms Maximum
- Dielectric Withstanding Voltage: 1800 V AC rms at Sea Level Between Adjacent Contacts
- Insulation Resistance: 5000 Megohms Minimum
- Operating Temperature: -65 to +105 Degrees C
- Insertion Force: 16 oz (4.45 N) Maximum per Contact Pair when Tested with a .070 (1.78) Thick Gauge
- Withdrawal Force: 1 oz (0.28 N) Minimum per Contact Pair when Tested with a .054 (1.37) Thick Gauge

305/315/355 SERIES ORDERING CODE

Series	Insulator Colour	Card Slot Length
305	Green	Standard Length per MIL-C-21097
315	Green	$.020(0.51)$ Shorter than Standard
355	Black	Standard Length per MIL-C-21097

Total Number of Contacts ${ }^{1}$	Contact Rows
$012,014, \ldots 086$	Dual Row

| Contact Code ${ }^{2,3} \quad$ Description \& Tail Size | Tail Length "G" | |
| :---: | :--- | :---: | :---: |
| 500 | Wire Hole.087 $\times .013(2.21 \times 0.33)$ | $.282(7.16)$ |
| 520 | P.C. Tail $.046 \times .013(1.17 \times 0.33)$ | $.213(5.41)$ |
| 521 | P.C. Tail $.046 \times .013(1.17 \times 0.33)$ | $.125(3.18)$ |
| 555 | Extender Board Bend (Code 500 Contacts) | |
| 556 | Extender Board Bend (Code 520 Contacts) | |

Insulator Style ${ }^{4}$	Description 2
5	.295 (7.49) Card Slot Depth
5	.330 (8.38) Card Slot Depth

Mounting Options ${ }^{5}$

01
02
03
04

07

08
58
68
78

Ordering Code Notes

1) All connector sizes up to 86 contacts dual row are available upon request.
2) Consult with Edac regarding single row configuration and wire wrap tail options.
3) For details of the extender board bends, refer to page 66.
4) Insulator style code 5 is available for the 305 and 355 series upon request.
5) For details of the mounting options, refer to page 68.

IN-CDNTACT POLARIZING KEY
P/N $307-240-326$

SECTIONS THROUGH CONTACT POSITION

INSULATQR STYLE
CODE 2
INSULATOR STYLE
CODE 5

RECOMMENDED BAUGHTER BOARD

NUMBER OF	"A"		"B"		"C"		"D"				"E"			
CONTACTS			305, 355	315										
Dual	Inch	(mm)			Inch	(mm)								
12	1.842	(46.79)	1.532	(38.91)			1.246	(31.65)	1.100	(27.94)	1.080	(27.43)	. 780	(19.81)
20	2.466	(62.64)	2.156	(54.76)	1.870	(47.50)	1.724	(43.79)	1.704	(43.28)	1.404	(35.66)		
24	2.778	(70.56)	2.468	(62.69)	2.182	(55.42)	2.036	(51.71)	2.016	(51.21)	1.716	(43.59)		
30	3.246	(82.45)	2.936	(74.57)	2.650	(67.31)	2.504	(63.60)	2.484	(63.09)	2.184	(55.47)		
36	3.714	(94.34)	3.404	(86.46)	3.118	(79.20)	2.972	(75.49)	2.952	(74.98)	2.652	(67.36)		
44	4.338	(110.19)	4.028	(102.31)	3.742	(95.05)	3.596	(91.34)	3.576	(90.83)	3.276	(83.21)		
48	4.650	(118.11)	4.340	(110.24)	4.054	(102.97)	3.908	(99.26)	3.888	(98.76)	3.588	(91.14)		
50	4.806	(122.07)	4.496	(114.20)	4.210	(106.93)	4.064	(103.23)	4.044	(102.72)	3.744	(95.10)		
56	5.274	(133.96)	4.964	(126.09)	4.678	(118.82)	4.532	(115.11)	4.512	(114.60)	4.212	(106.98)		
60	5.586	(141.88)	5.276	(134.01)	4.990	(126.75)	4.844	(123.04)	4.824	(122.53)	4.524	(114.91)		
72	6.522	(165.66)	6.212	(157.78)	5.926	(150.52)	5.780	(146.81)	5.760	(146.30)	5.460	(138.68)		
86	7.614	(193.40)	7.304	(185.52)	7.018	(178.26)	6.872	(174.55)	6.852	(174.04)	6.552	(166.42)		

[^0]Page 37

DMENSION			"A"						$\text { " } B^{\prime \prime}$					
SERIES	317		333		336		REST OF SERIES		317		333, 336		REST OF SERIES	
Number of Contacts Single Dual	Inch	(mm)												
$6 \quad 12$	1.830	(46.48)	1.784	(45.31)	1.857	(47.17)	1.842	(46.79)	1.539	(39.09)	1.534	(38.96)	1.532	(38.91)
$7 \quad 14$	1.986	(50.44)	1.940	(49.28)	2.013	(51.13)	1.998	(50.75)	1.695	(43.05)	1.690	(42.93)	1.688	(42.88)
$8 \quad 16$	2.142	(54.41)	2.096	(53.24)	2.169	(55.09)	2.154	(54.71)	1.851	(47.02)	1.846	(46.89)	1.844	(46.84)
918	2.298	(58.37)	2.252	(57.20)	2.325	(59.06)	2.310	(58.67)	2.007	(50.98)	2.002	(50.85)	2.000	(50.80)
$10 \quad 20$	2.454	(62.33)	2.408	(61.16)	2.481	(63.02)	2.466	(62.64)	2.163	(54.94)	2.158	(54.81)	2.156	(54.76)
$11 \quad 22$	2.610	(66.29)	2.564	(65.13)	2.637	(66.98)	2.622	(66.60)	2.319	(58.90)	2.314	(58.78)	2.312	(58.72)
$12 \quad 24$	2.766	(70.26)	2.720	(69.09)	2.793	(70.94)	2.778	(70.56)	2.475	(62.87)	2.470	(62.74)	2.468	(62.69)
$13 \quad 26$	2.922	(74.22)	2.876	(73.05)	2.949	(74.90)	2.934	(74.52)	2.631	(66.83)	2.626	(66.70)	2.624	(66.65)
$14 \quad 28$	3.078	(78.18)	3.032	(77.01)	3.105	(78.87)	3.090	(78.49)	2.787	(70.79)	2.782	(70.66)	2.780	(70.61)
$15 \quad 30$	3.234	(82.14)	3.188	(80.98)	3.261	(82.83)	3.246	(82.45)	2.943	(74.75)	2.938	(74.63)	2.936	(74.57)
$16 \quad 32$	3.390	(86.11)	3.344	(84.94)	3.417	(86.79)	3.402	(86.41)	3.099	(78.71)	3.094	(78.59)	3.092	(78.54)
$17 \quad 34$	3.546	(90.07)	3.500	(88.90)	3.573	(90.75)	3.558	(90.37)	3.255	(82.68)	3.250	(82.55)	3.248	(82.50)
$18 \quad 36$	3.702	(94.03)	3.656	(92.86)	3.729	(94.72)	3.714	(94.34)	3.411	(86.64)	3.406	(86.51)	3.404	(86.46)
1938	3.858	(97.99)	3.812	(96.82)	3.885	(98.68)	3.870	(98.30)	3.567	(90.60)	3.562	(90.47)	3.560	(90.42)
$20 \quad 40$	4.014	(101.96)	3.968	(100.79)	4.041	(102.64)	4.026	(102.26)	3.723	(94.56)	3.718	(94.44)	3.716	(94.39)
2142	4.170	(105.92)	4.124	(104.75)	4.197	(106.60)	4.182	(106.22)	3.879	(98.53)	3.874	(98.40)	3.872	(98.35)
2244	4.326	(109.88)	4.280	(108.71)	4.353	(110.57)	4.338	(110.19)	4.035	(102.49)	4.030	(102.36)	4.028	(102.31)
2346	4.482	(113.84)	4.436	(112.67)	4.509	(114.53)	4.494	(114.15)	4.191	(106.45)	4.186	(106.32)	4.184	(106.27)
$24 \quad 48$	4.638	(117.81)	4.592	(116.64)	4.665	(118.49)	4.650	(118.11)	4.347	(110.41)	4.342	(110.29)	4.340	(110.24)
$25 \quad 50$	4.794	(121.77)	4.748	(120.60)	4.821	(122.45)	4.806	(122.07)	4.503	(114.38)	4.498	(114.25)	4.496	(114.20)
$26 \quad 52$	4.950	(125.73)	4.904	(124.56)	4.977	(126.42)	4.962	(126.03)	4.659	(118.34)	4.654	(118.21)	4.652	(118.16)
$27 \quad 54$	5.106	(129.69)	5.060	(128.52)	5.133	(130.38)	5.118	(130.00)	4.815	(122.30)	4.810	(122.17)	4.808	(122.12)
$28 \quad 56$	5.262	(133.65)	5.216	(132.49)	5.289	(134.34)	5.274	(133.96)	4.971	(126.26)	4.966	(126.14)	4.964	(126.09)
$29 \quad 58$	5.418	(137.62)	5.372	(136.45)	5.445	(138.30)	5.430	(137.92)	5.127	(130.23)	5.122	(130.10)	5.120	(130.05)
$30 \quad 60$	5.574	(141.58)	5.528	(140.41)	5.601	(142.27)	5.586	(141.88)	5.283	(134.19)	5.278	(134.06)	5.276	(134.01)
3162	5.730	(145.54)	5.684	(144.37)	5.757	(146.23)	5.742	(145.85)	5.439	(138.15)	5.434	(138.02)	5.432	(137.97)
$32 \quad 64$	5.886	(149.50)	5.840	(148.34)	5.913	(150.19)	5.898	(149.81)	5.595	(142.11)	5.590	(141.99)	5.588	(141.94)
$33 \quad 66$	6.042	(153.47)	5.996	(152.30)	6.069	(154.15)	6.054	(153.77)	5.751	(146.08)	5.746	(145.95)	5.744	(145.90)
$34 \quad 68$	6.198	(157.43)	6.152	(156.26)	6.225	(158.12)	6.210	(157.73)	5.907	(150.04)	5.902	(149.91)	5.900	(149.86)
$35 \quad 70$	6.354	(161.39)	6.308	(160.22)	6.381	(162.08)	6.366	(161.70)	6.063	(154.00)	6.058	(153.87)	6.056	(153.82)
$36 \quad 72$	6.510	(165.35)	6.464	(164.19)	6.537	(166.04)	6.522	(165.66)	6.219	(157.96)	6.214	(157.84)	6.212	(157.78)
$37 \quad 74$	6.666	(169.32)	6.620	(168.15)	6.693	(170.00)	6.678	(169.62)	6.375	(161.93)	6.370	(161.80)	6.368	(161.75)
$38 \quad 76$	6.822	(173.28)	6.776	(172.11)	6.849	(173.96)	6.834	(173.58)	6.531	(165.89)	6.526	(165.76)	6.524	(165.71)
3978	6.978	(177.24)	6.932	(176.07)	7.005	(177.93)	6.990	(177.55)	6.687	(169.85)	6.682	(169.72)	6.680	(169.67)
$40 \quad 80$	7.134	(181.20)	7.088	(180.04)	7.161	(181.89)	7.146	(181.51)	6.843	(173.81)	6.838	(173.69)	6.836	(173.63)
4182	7.290	(185.17)	7.244	(184.00)	7.317	(185.85)	7.302	(185.47)	6.999	(177.77)	6.994	(177.65)	6.992	(177.60)
$42 \quad 84$	7.446	(189.13)	7.400	(187.96)	7.473	(189.81)	7.458	(189.43)	7.155	(181.74)	7.150	(181.61)	7.148	(181.56)
$43 \quad 86$	7.602	(193.09)	7.556	(191.92)	7.629	(193.78)	7.614	(193.40)	7.311	(185.70)	7.306	(185.57)	7.304	(185.52)
$44 \quad 88$							7.770	(197.36)					7.460	(189.48)

DMENSON				"C"						"D"				"E" ALL SERIES	
SER		303, 317		333		336		REST OF SERIES		315, 316		REST OF SERIES			
Number of Contacts Single Dual		Inch	(mm)												
6	12	1.220	(30.99)	1.261	(32.03)	1.216	(30.89)	1.246	(31.65)	1.080	(27.43)	1.100	(27.94)	. 780	(19.81)
7	14	1.376	(34.95)	1.417	(35.99)	1.372	(34.85)	1.402	(35.61)	1.236	(31.39)	1.256	(31.90)	. 936	(23.77)
8		1.532	(38.91)	1.573	(39.95)	1.528	(38.81)	1.558	(39.57)	1.392	(35.36)	1.412	(35.86)	1.092	(27.74)
9	18	1.688	(42.88)	1.729	(43.92)	1.684	(42.77)	1.714	(43.54)	1.548	(39.32)	1.568	(39.83)	1.248	(31.70)
10	20	1.844	(46.84)	1.885	(47.88)	1.840	(46.74)	1.870	(47.50)	1.704	(43.28)	1.724	(43.79)	1.404	(35.66)
11	22	2.000	(50.80)	2.041	(51.84)	1.996	(50.70)	2.026	(51.46)	1.860	(47.24)	1.880	(47.75)	1.560	(39.62)
12	24	2.156	(54.76)	2.197	(55.80)	2.152	(54.66)	2.182	(55.42)	2.016	(51.21)	2.036	(51.71)	1.716	(43.59)
13	26	2.312	(58.72)	2.353	(59.77)	2.308	(58.62)	2.338	(59.39)	2.172	(55.17)	2.192	(55.68)	1.872	(47.55)
14	28	2.468	(62.69)	2.509	(63.73)	2.464	(62.59)	2.494	(63.35)	2.328	(59.13)	2.348	(59.64)	2.028	(51.51)
15	30	2.624	(66.65)	2.665	(67.69)	2.620	(66.55)	2.650	(67.31)	2.484	(63.09)	2.504	(63.60)	2.184	(55.47)
16	32	2.780	(70.61)	2.821	(71.65)	2.776	(70.51)	2.806	(71.27)	2.640	(67.06)	2.660	(67.56)	2.340	(59.44)
17	34	2.936	(74.57)	2.977	(75.62)	2.932	(74.47)	2.962	(75.23)	2.796	(71.02)	2.816	(71.53)	2.496	(63.40)
18	36	3.092	(78.54)	3.133	(79.58)	3.088	(78.44)	3.118	(79.20)	2.952	(74.98)	2.972	(75.49)	2.652	(67.36)
19	38	3.248	(82.50)	3.289	(83.54)	3.244	(82.40)	3.274	(83.16)	3.108	(78.94)	3.128	(79.45)	2.808	(71.32)
20	40	3.404	(86.46)	3.445	(87.50)	3.400	(86.36)	3.430	(87.12)	3.264	(82.91)	3.284	(83.41)	2.964	(75.29)
21	42	3.560	(90.42)	3.601	(91.47)	3.556	(90.32)	3.586	(91.08)	3.420	(86.87)	3.440	(87.38)	3.120	(79.25)
22	44	3.716	(94.39)	3.757	(95.43)	3.712	(94.28)	3.742	(95.05)	3.576	(90.83)	3.596	(91.34)	3.276	(83.21)
23	46	3.872	(98.35)	3.913	(99.39)	3.868	(98.25)	3.898	(99.01)	3.732	(94.79)	3.752	(95.30)	3.432	(87.17)
24	48	4.028	(102.31)	4.069	(103.35)	4.024	(102.21)	4.054	(102.97)	3.888	(98.76)	3.908	(99.26)	3.588	(91.14)
25	50	4.184	(106.27)	4.225	(107.32)	4.180	(106.17)	4.210	(106.93)	4.044	(102.72)	4.064	(103.23)	3.744	(95.10)
26	52	4.340	(110.24)	4.381	(111.28)	4.336	(110.13)	4.366	(110.90)	4.200	(106.68)	4.220	(107.19)	3.900	(99.06)
27	54	4.496	(114.20)	4.537	(115.24)	4.492	(114.10)	4.522	(114.86)	4.356	(110.64)	4.376	(111.15)	4.056	(103.02)
28	56	4.652	(118.16)	4.693	(119.20)	4.648	(118.06)	4.678	(118.82)	4.512	(114.60)	4.532	(115.11)	4.212	(106.98)
29	58	4.808	(122.12)	4.849	(123.16)	4.804	(122.02)	4.834	(122.78)	4.668	(118.57)	4.688	(119.08)	4.368	(110.95)
30	60	4.964	(126.09)	5.005	(127.13)	4.960	(125.98)	4.990	(126.75)	4.824	(122.53)	4.844	(123.04)	4.524	(114.91)
31	62	5.120	(130.05)	5.161	(131.09)	5.116	(129.95)	5.146	(130.71)	4.980	(126.49)	5.000	(127.00)	4.680	(118.87)
32	64	5.276	(134.01)	5.317	(135.05)	5.272	(133.91)	5.302	(134.67)	5.136	(130.45)	5.156	(130.96)	4.836	(122.83)
33	66	5.432	(137.97)	5.473	(139.01)	5.428	(137.87)	5.458	(138.63)	5.292	(134.42)	5.312	(134.92)	4.992	(126.80)
34	68	5.588	(141.94)	5.629	(142.98)	5.584	(141.83)	5.614	(142.60)	5.448	(138.38)	5.468	(138.89)	5.148	(130.76)
35	70	5.744	(145.90)	5.785	(146.94)	5.740	(145.80)	5.770	(146.56)	5.604	(142.34)	5.624	(142.85)	5.304	(134.72)
36	72	5.900	(149.86)	5.941	(150.90)	5.896	(149.76)	5.926	(150.52)	5.760	(146.30)	5.780	(146.81)	5.460	(138.68)
37	74	6.056	(153.82)	6.097	(154.86)	6.052	(153.72)	6.082	(154.48)	5.916	(150.27)	5.936	(150.77)	5.616	(142.65)
38	76	6.212	(157.78)	6.253	(158.83)	6.208	(157.68)	6.238	(158.45)	6.072	(154.23)	6.092	(154.74)	5.772	(146.61)
39	78	6.368	(161.75)	6.409	(162.79)	6.364	(161.65)	6.394	(162.41)	6.228	(158.19)	6.248	(158.70)	5.928	(150.57)
40	80	6.524	(165.71)	6.565	(166.75)	6.520	(165.61)	6.550	(166.37)	6.384	(162.15)	6.404	(162.66)	6.084	(154.53)
41	82	6.680	(169.67)	6.721	(170.71)	6.676	(169.57)	6.706	(170.33)	6.540	(166.12)	6.560	(166.62)	6.240	(158.50)
42	84	6.836	(173.63)	6.877	(174.68)	6.832	(173.53)	6.862	(174.29)	6.696	(170.08)	6.716	(170.59)	6.396	(162.46)
43	86	6.992	(177.60)	7.033	(178.64)	6.988	(177.50)	7.018	(178.26)	6.852	(174.04)	6.872	(174.55)	6.552	(166.42)
	88							7.174	(182.22)			7.028	(178.51)	6.708	(170.38)

MOUNTING OPTIONS - CARD EDGE CONNECTORS

Standard Mounting Details

CODE $\mathbf{x 0 1}$ - NO MOUNTING LUGS

- Applicable for 303, 305, 306, 307, 310, 315, 316, 317, 321, 325, 327, 333, 336, 337, 338, $340,341,342,345,346,355,356,357,379,384,387,391,392,395$ and 396 Series

CODE x02, x04 \& x09-THROUGH MOUNTING HOLES

Applicable Series	Code x02 "A" Dia.	Code x04 "A" Dia.	Code x09 "A" Dia.
$303,305, ~ 306, ~ 307, ~ 310, ~ 315, ~$ $316,321, ~ 333, ~ 337, ~ 338, ~ 340 ~$ $341,345,346, ~ 355, ~ 356, ~ 357 ~$ $379,384,387,391,395,396$		$.156(3.96)$	-
317,323	$.144(3.66)$	$.156(3.96)$	-
325	-	-	$.160(4.06)$
327	-	-	$.163(4.14)$
336	$.128(3.25)$	$.156(3.96)$	$.178(4.52)$
342,392	$.128(3.25) \times$	$.156(3.96)$	-
	$.146(3.71)$		

CODE x03-FLOATING EYELETS

Applicable Series	"A"
$303,305,306,307,310,315,316$,	$.328(8.33)$
$317,321,323,333,336,337,338$,	
$341,345,346,355,356,357,379$,	
$384,387,391,395,396$	$.348(8.84)$
342,392	

CODE x07 \& x08 - THREADED INSERTS

- Applicable for 303, 305, 306, 307, 310, 315, 316, 317, 321, 323, 325, 333, 336, 337, 338, $341,342,345,346,356,357,379,384,387,391,392,395$ and 396 Series
- See Code x12 for Side Mounting Threaded Inserts

CODE x12-SIDE MOUNTING HOLES

Applicable Series	"A"
$307,333,337,345,346,357,387$,	$.125(3.18)$
395,396	$.135(3.43)$
342,392	

- Series Listed Above based on Availability of 90 Degree Bend Contact Tails. Side Mounting Holes may also be Used for Other Card Edge Connectors with a Lug Height of . 250 (6.35) or Greater.
- For Side Mounting with Threaded Inserts, Specify Code x17 for M3-0.5 Metric Threads or Code x18 for \#4-40 Unified Threads.

MOUNTING OPTION COBES $\times 02, \times 04$ \& $\times 09$

MOUNTING OPTION
CODES $\times 07$ \& $\times 08$

MOUNTING OPTION CODE $\times 12$

CARD EDGE CONNECTORS - MOUNTING OPTIONS

Standard Mounting Details

CODE x58 \& x68-OFFSET CARD GUIDES

MOUNTING OPTION CODES $\times 5$ 名 \& $\times 6$ 呂

Applicable Series for Code x58 Guides	"A"	"B"	"C"	"D"
$305, ~ 306, ~ 307, ~ 315, ~$ $316, ~ 337, ~ 338, ~ 355, ~$ $356, ~ 357, ~ 387 ~$	$.468(11.89)$	$2.755(69.98)$	$.125(3.18)$	$.423(10.74)$
345,395	$.468(11.89)$	$2.755(69.98)$	$.120(3.05)$	$.402(10.21)$
346,396	$.468(11.89)$	$2.755(69.98)$	$.120(3.05)$	$.398(10.11)$

Applicable Series for Code x68 Guides	"A"	"B"	"C"	"D"
$305,306,307,315$, $316,337,338,355$,	$.344(8.74)$	$2.505(63.63)$	$.060(1.52)$.242 (6.15)
$356,357,387$				

- For Card Guides with . 128 (3.25) Dia. Through Hole Inserts, Specify Code x52 or x62.
- For Card Guides with M3-0.5 Metric Threaded Inserts, Specify Code x57 or x67.
- For Field Assembly of Card Guides, Refer to Page 71.

CODE x78 \& x88-IN-LINE CARD GUIDES

Applicable Series for Code x78 Guides	"B"	"C"
$305, ~ 306, ~ 307, ~ 315, ~ 316, ~ 337, ~ 338, ~$ $355, ~ 356, ~ 357, ~ 387 ~$	$1.550(39.37)$	$.090(2.29)$
317	$1.712(43.48)$	$.110(2.79)$
345,395	$2.750(69.85)$	$.083(2.11)$
346,396	$2.750(69.85)$	$.091(2.31)$
Applicable Series for Code x88 Guides	"B"	"C"
345, 395	$1.250(31.75)$	$.083(2.11)$

- In-Line Card Guides are Not Suitable for the Flush Mounting Lug Versions of 337, 387, 346 or 396 Series
- For Card Guides with . 128 (3.25) Dia. Through Hole Inserts, Specify Code x72 or x82.
- For Card Guides with M3-0.5 Metric Threaded Inserts, Specify Code x77 or x87
- For Field Assembly of Card Guides, Refer to Page 71.

Edgeboard Connectors, Dual Readout

ELECTRICAL SPECIFICATIONS

Current Rating: 5 amps .

Test Voltage Between Contacts:

At sea level: 1800VRMS.
At 70,000 feet [21,336 meters]: 450VRMS.
Insulation Resistance: 5000 Megohm minimum at 500VDC potential.
Contact Resistance: 30 millivolts maximum at rated current (with gold plating).
Operating Temperature: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
Humidity: 96 hours at 90% relative humidity at $+40^{\circ} \mathrm{C}$, dried at room temperature for 3 hours minimum, insulation resistance 5000 Megohm.
Durability: (With gold plating.) After 500 cycles of insertion and withdrawal of 0.070 " $[1.78 \mathrm{~mm}$] thick steel test gauge, contact resistance less than 0.030 V at 5 amps and individual contact retention force when measured with a 0.054 " [1.37 mm] thick steel test pin greater than $1 / 2$ ounce.
Shock: Three 50 g shocks in each of 3 mutually perpendicular planes with no loss of continuity.
Vibration: 2 hours in each of 3 mutually perpendicular planes, frequency sweep 10 to 55 cps at 0.06 double amplitude with no loss of continuity.

FEATURES

- 0.156" C-C x 0.200" grid [3.96mm x 5.08 mm].
- Greater design latitude.

3 body materials: Diallyl phthalate, phenolic and glassfilled polyester.
6 contact termination styles.
8 body sizes.
7 mounting styles.

- Bifurcated bellows contacts provide 2 flexing contact surfaces to assure positive contact.
- Accepts PC board thickness of 0.054" - 0.071" [1.37mm -1.80 mm].
- Polarization between contact positions in all sizes.
- Selective gold plating.
- Recognized under the Component Program of Underwriters Laboratories, Inc. Listed under File E65524, Project 77CH3889.

APPLICATIONS

For use with 0.062 " $[1.57 \mathrm{~mm}$] printed circuit boards requiring an edgeboard type connector on .156" [3.96mm] centers.

PHYSICAL SPECIFICATIONS

Contact Type: Bifurcated bellows.
Number of Contacts: 6, 10, 12, 15, 18, 22, 24, 25 per side.
Contact Spacing: 0.156 " $[3.96 \mathrm{~mm}]$ center to center.
Card Thickness: $0.054^{\prime \prime}$ to $0.071^{\prime \prime}$ [1.37 mm to 1.80 mm].
Card Slot Depth: 0.330 " [8.38mm], dual readout.

MATERIAL SPECIFICATIONS

Body:

"1" glass-filled diallyl phthalate per MIL-M-14, Type SDG-F green, flame retardant (UL 94V-0).
" 2 " glass-filled phenolic per MIL-M-14, Type MFH dark green, flame retardant (UL 94V-0).
" 3 " thermoplastic polyester, glass-filled, black, flame retardant (UL 94V-0).
" 5 " thermoplastic polyphenylene sulfied, glass-filled, brown, flame retardant (UL 94V-0).
Contacts: Phosphor bronze.
Polarizing Key: Glass reinforced nylon, flame retardant (UL 94V-O).
Contact Plating: Gold (See Ordering Information).
NOTE: High temperature burn-in, edgeboard connectors, 0.156 " $[3.96 \mathrm{~mm}$] center to center are on page 20 of this catalog.

ORDERING INFORMATION							
EB8	1	B	A	22	SG	X	A
MODEL	BODY	OPTIONAL	STANDARD	CONTACTS	CONTACT	MOUNTING	POLARIZING
	MATERIAL	CONTACTS	TERMINAL VARIATIONS		PLATING	VARIATIONS	KEY POSITIONS
	Optional Body	Beryllium Copper	A, C, D,	6, 10, 12,	SG = Selective Gold Plating		Key(s) are
	Material	contacts optional.	K, L or E	15, 18, 22,	(0.00003"		located to
	1 = Diallyl	Available in "A" and		24 or 25	minimum thick) on contac		right of
	Phthalate	"E" contact styles			area with Gold Flash on		position(s)
	$2=$ Phenolic	only. (Omit for			terminal.		designated.
	$\begin{aligned} & 3=\begin{array}{l} \text { Glass-filled } \\ \text { Polyester } \end{array} \end{aligned}$	standard.)			$\begin{aligned} & \text { SGF = Selective Gold Plating } \\ & (0.00001 "[0.000254 \mathrm{~mm} \end{aligned}$		Required
	5 = Glass-filled				minimum thick) on contac		polarizing
	Polyphenylene				terminal.		keys are to
	Sulfied				All Gold Plating over 0.00005		be factory
					[0.00127 mm] minimum Nicke		installed.
					Underplate.		
					Contact factory for additiona plating options.		

\# OF CONTACT POSITIONS	\mathbf{A}			
6	$1.78[45.21]$	\mathbf{B}	\mathbf{D}	E
10	$2.41[61.21]$	$2.531[38.89]$	$1.240[31.50]$	$1.100[27.94]$
12	$2.72[69.09]$	$2.469[62.71]$	$2.864[47.35]$	$1.724[43.79]$
15	$3.19[81.03]$	$2.937[74.60]$	$2.644[67.16]$	$2.503[51.71]$
18	$3.66[92.96]$	$3.406[86.51]$	$3.112[79.05]$	$2.972[75.49]$
22	$4.28[108.71]$	$4.031[102.39]$	$3.736[94.89]$	$3.596[91.34]$
24	$4.59[116.59]$	$4.344[110.33]$	$4.051[102.89]$	$3.911[99.34]$
25	$4.75[120.65]$	$4.500[114.30]$	$4.207[106.86]$	$4.067[103.30]$

TERMINAL VARIATIONS in inches [millimeters]

		Type "L" SolderDip To fit 0.036 [0.914] Dia. Eyelet $0.156 \pm 0.015[3.96 \pm 0.381]$

Vishay Dale

POLARIZING KEY

When ordering polarizing keys
individually, specify Model Number: PK-8 between contacts.
Hand insertion tool, TPK-8, provided on request.

MOUNTING VARIATIONS in inches [millimeters]			
Type "V" Clearance Hole	Type "VI" Clearance Hole No Mounting Pad	Type "W" No Mounting Flange	Type "X" Clearance Hole
			Float 0.047 [1.19] NOTE: Overall body length increased by 0.060 [1.52].

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

J3112 SERIES

				A $-.75$	-1		$\begin{aligned} & 7 \\ & 41 \\ & 1 \\ & \hline \end{aligned}$			$\begin{gathered} 56 \\ 1 \\ 1 \\ 1 \end{gathered}$			$\frac{\Gamma_{0}^{156}}{\partial 1}$	
													port Me	
Part Numbe	Figure	Elastomer	Axia lbs	Load	Defle in		Axial lbs/in	gat N/mm	Radia lbs/in	ing Rate N/mm	Thick in		Dian in	$\begin{aligned} & \text { eter } \\ & \text { mm } \end{aligned}$
J311251	1a	Natural	1	4	0.045	1.2	22	3.9	44	7.7	0.062	1.6	0.555	14.1
J3112611	1 d	Natural	1	4	0.045	1.1	22	3.9	44	7.7	0.062	1.6	0.555	14.1
J311222	1 b	Neoprene	2	9	0.060	1.5	33	5.8	66	11.6	0.062	1.6	0.555	14.1
J3112802	1 c	SPE	2	9	0.035	0.9	57	10.0	114	20.1	0.062	1.6	0.555	14.1
J311283	1 c	Neoprene	3	13	0.060	1.5	50	8.8	100	17.5	0.062	1.6	0.555	14.1
J3112804	1 c	SPE	4	18	0.035	0.9	114	20.1	228	40.2	0.062	1.6	0.555	14.1

J17736 SERIES

Part Number	Figure	Elastomer	Maximum				Axial Spring Rate		Radial Spring Rate		Support Member					
			Axial Load		Deflection				Thick		Diam					
			lbs	N	in	mm	lbs/in	N/mm			lbs/in	N/mm	in	mm	in	mm
J177362	2 c	Neoprene	1	4	0.060	1.5	17	2.6	17	2.6	0.062	1.6	0.555	14.1		
J1773641	2 c	SPE	1	4	0.060	1.5	17	2.6	34	5.3	0.062	1.6	0.555	14.1		

J2924 / J2927 SERIES

	Maximum										Support Member			
Part Number	Figure	Elastomer	Axial Load		Deflection		Axial Spring Rate		Radial Spring Rate		Thickness		Diameter	
J292421	3 a		1	4	0.006	1.5	17	2.6	17	2.6	0.062	1.6	0.735	18.7
J2927461	3 c	Neoprene	1	4	0.060	1.5	17	2.6	17	2.6	0.062	1.6	0.735	18.7
J292714	3 b	Neoprene	4	18	0.060	1.5	65	11.4	65	11.4	0.062	1.6	0.735	18.7

[^0]: Dimensions of Other Connector Sizes are Listed on Page 74

