ABOUT THESE PUBLICATIONS

Listings in this Index cover the application publications of the many Hewlett-Packard laboratories. So that you know you have the latest available information, a date is included with each listing of revised application information; no date with a listing indicates there has been no revision.

Due to the specialized nature of these publications, they are distributed only upon request; they are available without charge at your nearby Hewlett-Packard Sales and Service Office (see back pages).

As information presented in individual application publications becomes common knowledge or is superseded by improved methods, publications may be discontinued.

For specific application information relating to measurement, your Hewlett-Packard Field Engineer is always happy to help; you will find him in the HP Sales and Service Office nearest you.

HEWLETT-PACKARD APPLICATION NOTES

AN 3

MEASUREMENT OF RF PULSE CARRIER FREQUENCY

The problem of accurately determining carrier frequency during short rf pulses is discussed. Several methods are presented, with typical data for making such measurements from UHF to X band. 7 pages.

AN 12

HOW A HELIX BACKWARD-WAVE TUBE WORKS

The backward-wave oscillator provides a flexible source of microwave energy that can be voltage-tuned over octave bandwidths. This Note discusses basics of the operation of the helical backward-wave tube. 4 pages.

AN 16

WAVES ON TRANSMISSION LINES

Wave equations are developed for the lossless transmission line. The effects of termination, reflection losses, and standing waves are discussed. An explanation of the Smith Chart as used for both lossless and lossy line calculations is included with an example of how to use the Chart. R: 16 Feb. 64

AN 17

SQUARE WAVE AND PULSE TESTING

A discussion of square-wave and pulse testing of linear systems. The transformation from the time-to-frequency-to-time domain is explained, and a table of selected Fourier and LaPlace Transforms is included. The response of linear systems to both impulse and square-wave excitation is discussed with particular emphasis placed on the physical significance of such responses. 15 pages.
AN 20

HEWLETT-PACKARD SIGNAL GENERATOR OUTPUT ATTENUATORS

A short discussion of the waveguide-beyond-cutoff type of attenuator. Since the geometry of this type of attenuator and probe frequency response determine its operation, the control of these two variables assures specified attenuator accuracy. 2 pages.

AN 25

CATHODE RAY TUBE PHOSPHORS AND THE INTERNAL GRATICULE CATHODE RAY TUBE

A definitive analysis of different phosphors commonly used in CRTs: their advantages and application. Design features of Hewlett-Packard's Internal Graticule are covered, and the aluminizing process used for Hewlett-Packard CRTs is discussed. 5 pages.

AN 29

A CONVENIENT METHOD FOR MEASURING PHASE SHIFT

A method for reading phase shift directly with an oscilloscope is presented. Method uses the Hewlett-Packard Webb Mask available from Hewlett-Packard Sales and Service Offices. 2 pages

AN 36

SAMPLING OSCILLOGRAPHY

A comprehensive discussion of sampling oscillography including history of the technique, general sampling considerations (plotting points, sampling time limits, bandwidth, and a block diagram with related circuit explanation). 6 pages.

AN 48

APPLICATIONS OF THE HEWLETT-PACKARD MODEL 218A, A VERSATILE GENERAL-PURPOSE PULSE AND DELAY GENERATOR

Describes the uses of Model 218A as a general-purpose laboratory pulse generator. A 218A often can take the place of several special-purpose pulse generators when the appropriate plug-in unit is used. 12 pages.

AN 52

FREQUENCY AND TIME STANDARDS

Explains the principles of precision frequency and time standards, with emphasis on practical working methods of establishing and maintaining them. This up-to-date revision gives comprehensive coverage, including the new atomic resonance standards. Describes system operation, methods of precise frequency intercomparisons, time scales, world-wide F&T standards broadcasts. 100 pages.

AN 56

MICROWAVE MISMATCH ERROR ANALYSIS

Discusses the possible error in microwave power and attenuation measurements due to mismatch loss. Presents a method of determining the limits of these errors through the use of mismatch-loss charts. 12 pages.

AN 57

NOISE FIGURE PRIMER

Detection-system sensitivity depends upon noise present with the signal and noise contributed by the system. This Note defines Noise Figure, and illustrates its use in minimizing system-contributed noise. 8 pages.

AN 58

THE PIN DIODE AS A MICROWAVE MODULATOR

The PIN diode is an absorption attenuator which permits high-speed, complex modulation of klystron and backward-wave sources with virtually no frequency pulling. This Note includes a brief description of the PIN diode, its operating characteristics as a function of frequency, bias, and temperature, and some of its many applications. 8 pages.

AN 59

LOOP GAIN MEASUREMENTS WITH HEWLETT-PACKARD WAVE ANALYZERS

Describes methods of measuring loop gain in negative-feedback circuits without breaking the loop. By using Hewlett-Packard wave analyzers and clip-on current probes, a once complicated procedure is made easy. 4 pages.
AN 60
WHICH AC VOLTMETER?

AC voltmeters are of three basic types: average-responding, peak-responding, and rms-responding. Although meters of all three types are commonly calibrated in rms values, and all three give accurate rms readings of sine waves within their respective frequency-range capabilities, their indications differ in response to non-sinusoidal waveforms. The reasons for the differences, possible compensations, and incompatibilities are explained in this Note. Most economical choices for various services. 14 pages.

AN 62
TIME DOMAIN REFLECTOMETRY

Describes an extremely useful transmission line measuring technique that 1) simultaneously displays the transmission quality of a system for frequencies from dc to a few gigacycles, and 2) isolates each discontinuity in a system so that it can be individually compensated on a broadband basis. This Note also describes how Time Domain Reflectometry can be used to measure such cable parameters as characteristic impedance, Z₀ (either its absolute value or its uniformity with distance), loss (either series or shunt), and length. The Note includes basic principles of the technique as well as accuracy considerations. 17 pages.

AN 63
SPECTRUM ANALYSIS

Briefly introduces and reviews general principles of spectrum analysis, as well as discussing some of the major design considerations of a microwave spectrum analyzer. Covers new applications (RFI measurements, spectrum signatures, and multiplier chain alignment, for example), as well as more conventional measurements (pulse analysis, modulation characteristics, etc.). Specific, well-illustrated applications demonstrate the usefulness and convenience of making otherwise difficult measurements with the HP Spectrum Analyzer. 41 pages.

AN 63A
MORE ON SPECTRUM ANALYSIS

This note supplements AN63 and contains detailed descriptions of new measurement techniques made possible with the development of the HP Spectrum Analyzer. A sampling of the topics covered includes:

- Achieving high sensitivity through proper use of low-noise preamps
- FM deviation measurements and klystron linearity tests
- Spectrum analysis of microwave semiconductor phenomena
- Making fast, accurate RFI measurements
- Proper use of preselection filters to obtain spectrum signatures
- Calibrating a wide range, swept receiver
- Analyzing selected RF pulses in a pulse train
- Improving X-Y recording of RF pulses. 31 pages.

AN 63B
THE 8441A PRESELECTOR: ADVANCEMENT IN THE ART OF SPECTRUM ANALYSIS

Discusses how to use the 8441A Preselector to restrict Analyzer responses to the band of interest. Includes explanation of Analyzer multiple responses. Also discusses how to use the 8441A to reduce harmonic content in the output of a sweep oscillator, and how the 8441A can be used as a simple spectrum analyzer of the tuned radio-frequency type. 8 pages.

AN 63C
MEASUREMENT OF WHITE NOISE POWER DENSITY WITH THE H10-851B/8551B SPECTRUM ANALYZER

Describes a new application for the spectrum analyzer, including a discussion of analyzer theory affecting the measurement and the routine procedure for operating the equipment to assist with setting up and easily making accurate measurements. 6 pages.

AN 63D
FREQUENCY CALIBRATING THE 851/8551 SPECTRUM ANALYZER WITH THE 8406A FREQUENCY COMB GENERATOR

Describes expansion of spectrum analyzer capability through accurate frequency calibration. Frequency accuracy is 0.01% through 5 GHz and slightly less through 40 GHz. Theory, set-up procedures, and examples are included. 10 pages.
AN 64
MICROWAVE POWER MEASUREMENTS

This comprehensive Note covers virtually all phases of microwave power measurement. The various types of power-measuring devices are described, including principles of operation, techniques of measurement, interpretation of results, and accuracy considerations. Evaluation of measurement errors is extensively treated, with particular emphasis on topics like power standards and traceability, calibration factor, effective efficiency, mismatch loss, etc. Practical suggestions for minimizing measurement uncertainties are presented. 69 pages.

AN 65
SWEPT FREQUENCY TECHNIQUES

Swept-frequency measurements have become one of the most useful tools available to the microwave engineer. Practically all important microwave parameters, including impedance (that is, SWR or reflection coefficient), attenuation, power, and frequency -- can be examined quickly and accurately over broad frequency ranges utilizing swept measurement techniques. This Note describes the newest methods for making these measurements, and includes numerous illustrations and examples.

The techniques are approached on a “systems” basis with each of the factors affecting system accuracy discussed. Special attention is paid to “closed-loop leveled” sweep oscillators, which permit new flexibility in selection of the detection and readout portion of the swept system. 41 pages.

AN 67
CABLE TESTING WITH TIME DOMAIN REFLECTOMETRY

A summary of cable-testing techniques using TDR. Discusses ways of simplifying cable measurements when multiple reflections or spurious signals are present. Includes a slide rule for quick measurements of distance and impedance. 20 pages.

AN 68
ACCURATE RECEIVER SENSITIVITY MEASUREMENTS

This brief Note describes a simple but accurate technique for measuring receiver sensitivity. A signal generator or source, power meter with thermistor mount, and directional coupler are used in a manner which greatly reduces the measurement uncertainties often encountered in receiver measurements. 2 pages.

AN 69
WHICH DC VOLTMETER?

Appropriate selection of DC voltage measurement equipment involves an understanding of its capabilities and performance. Several types of versatile, modern voltmeters are reviewed here, with an entire chapter devoted to a specifying guide. Another chapter is given to analysis of the measurement situation as a means of avoiding costly errors in instrument selection. Universally accepted definitions and standards, basic to all voltage measurement, are derived and explained in the closing chapter. AN69 is probably one of the most authoritative pieces ever published on the subject of voltmeters. 40 pages.

AN 70
PRECISION DC VOLTAGE MEASUREMENTS

Although the standards laboratory environment is still the ideal for precision DC measurements, several recently-designed Hewlett-Packard instruments provide much of the standards lab precision in a wide range of situations. No longer is it necessary to use specialized personnel under exacting environmental conditions in order to get precise DC calibration measurements. AN70 gives step-by-step procedures for obtaining transfer and calibration measurements of unusual accuracy. 8 pages.

AN 71
ADVANCES IN RF MEASUREMENTS USING MODERN SIGNAL GENERATORS, 50 kHz-480 MHz

Describes how the 8708A Synchronizer phase-locks the 606B (50KHz-65MHz) and 608F (10MHz-455MHz) generators at any frequency -- with frequency stability of 2 parts in 10^7 per 10 minutes. Shows how speed and accuracy can be improved by the automatic amplitude leveling features of the 606B, 608F. Also discusses many of the uses for signals of high stability. 22 pages.

AN 72
INTEGRAL COUNTING

Describes gamma ray counting of the integral type, where all pulses above a preset minimum level are counted. Presents plateau curves for Hewlett-Packard scintillation detectors. 4 pages.

AN 73
CALIBRATION OF A GAMMA RAY SPECTROMETER

Presents step-by-step procedures for the calibration of a single-channel gamma ray spectrometer, including details specific to the Hewlett-Packard scaler-timer, spectrum scanner, high-voltage power supply, and scintillation detectors. Describes the functions essential to a gamma ray spectrometer. 30 pages.
AN 75
SELECTED ARTICLES ON TIME DOMAIN REFLECTOMETRY APPLICATIONS

AN 76
USING THE 230A POWER AMPLIFIER

Describes the many ways to use the 230A, a tuned RF power amplifier. Includes techniques for testing receivers for overload characteristics, cross modulation, adjacent channel desensitization. How to use the Amplifier for attenuation measurements, frequency multiplication, antenna testing, and in RFI testing. Discusses how the low noise of the 230A makes it useful as a tuned preamplifier for counters, voltmeters, and other low-level uses. 11 pages.

AN 77-1
TRANSISTOR PARAMETER MEASUREMENTS

Details techniques for using the 8405A Vector Voltmeter for measuring “s” (scattering) parameters of transistors above 100 MHz where h and y parameters are difficult to measure. Describes measurement systems and use of “s” parameters in design. Includes an appendix equating “s” parameters to h, y, and z parameters. 12 pages.

AN 77-2
PRECISION FREQUENCY COMPARISON

Discusses how to use the 8405A Vector Voltmeter for the precise measurement of frequency drift between two equal frequencies. Includes setups and step-by-step instructions for making high-resolution frequency comparisons with quartz oscillator and atomic beam frequency standards. 9 pages.

AN 77-3
COMPLEX IMPEDANCE MEASUREMENTS

Presents techniques for accurate determination of the magnitude and phase angle of impedance through use of the HP 8405A Vector Voltmeter. One of the techniques discussed involves use of precision wide-band, high-directivity directional couplers to measure reflection coefficient. Another method employs an accurate power splitter and precise terminations. Practical measurement examples are offered and accuracy considerations are discussed. 11 pages.

AN 78-1
CALIBRATING THE QUARTZ THERMOMETER

Describes 1) the factory calibration procedure which establishes accuracy specifications traceable to the National Bureau of Standards, 2) the field calibration required to maintain the thermometer within its original specs, and 3) special calibration techniques which can be used to secure maximum accuracy under restricted measurement conditions. 7 pages.

AN 78-2
MOLECULAR WEIGHT DETERMINATION WITH THE QUARTZ THERMOMETER

The freezing point of a solvent is lowered and the boiling point elevated by a predictable amount by the addition of a nonvolatile non-ionizable solute which does not react with the solvent. Appropriate data obtained from the change in a solvent’s boiling and freezing points can be used to determine the purity of a solvent or to measure the molecular weight of some substances. Prior to the advent of the Quartz Thermometer, use of this technique was extremely time-consuming. AN 78-2 discusses how to use the Quartz Thermometer for such measurements, and provides pertinent data such as molal elevation and depression constants for some solvents. 4 pages.

AN 78-3
CALORIMETRY AND THE QUARTZ THERMOMETER

Discusses the broad area of calorimetry. Pages 1-4 provide a general introduction to types of calorimeters, plus a brief review of the various kinds of thermometers used in calorimetric measurements. Pages 5, 6 describe the important characteristics of the Quartz Thermometer. The typical calorimetric determination described, starting on page 7, clearly illustrates just how well suited the Quartz Thermometer is to this type of work. 11 pages.

AN 79
STATISTICAL COMPARISON OF A DIGITAL SYSTEM AND A RATEMETER FOR NUCLEAR MEASUREMENTS

Compares the response from a scaler-timer combined with a digital-to-analog converter with that of an analog ratemeter and shows statistically that the digital system offers significantly improved accuracy for most measurements. Includes graphs for the two approaches to indicate the relationship accuracy bears to count rate, to rate of change of count rate, and to measurement interval or time constant. 6 pages.
AN 81
LOW FREQUENCY PHASE SHIFT MEASUREMENT TECHNIQUES

Describes techniques for measuring signal phase shift at low frequencies (to less than .01 Hz), in servo systems and other low-frequency devices, with the HP Model 203A Variable Phase Function Generator. Also described are methods for deriving multiple-phase outputs, for hysteresis curve plotting, and for calibrating the continuously-variable phase-shift control of the Model 203A. 11 pages.

AN 82
POWER SUPPLY/AMPLIFIER CONCEPTS AND MODES OF OPERATION

Describes the basic circuit configuration, lists salient features, indicates some of the many applications, and illustrates in detail the rear terminal strapping pattern and associated circuit configuration for many possible operating modes. 23 pages.

AN 83
INCREASED OUTPUT RESISTANCE FOR DC REGULATED POWER SUPPLIES

Describes a method for increasing the output resistance of a well-regulated constant-voltage power supply in a predictable and controlled fashion. 3 pages.

AN 84
SWEPT SWR MEASUREMENT IN COAX

Describes a technique for making slotted line SWR measurements, quickly and accurately, from 1.8 to 18.0 GHz with swept-frequency techniques. SWR over wide frequency ranges is observed on a variable persistence oscilloscope for instantaneous display or recorded on a time-exposed photograph taken on a conventional oscilloscope. Accuracy is inherently that of the residual SWR of the slotted line. Setups and equipment to make the measurements are fully described. 7 pages. 1 Feb 67

AN 85
USING A REVERSIBLE COUNTER

Surveys wide range of measurement and control situations in which a reversible counter is useful, and provides diagrams for most of the applications discussed. The Note also discusses capabilities of the reversible counter, its input requirements, and characteristics required of associated equipments such as transducers, recorders, scanners, and devices for transmitting data to a data acquisition system or indicating instrument. 39 pages.

AN 86
USING THE VECTOR IMPEDANCE METERS

Useful information on making impedance measurements with the 4800A and 4815A Vector Impedance Meters (5Hz-108MHz). Includes a Vector Impedance Calculator and information on evaluation of components, transmission line measurements, transformer measurements, measurements on devices biased with dc, measurements in the presence of noise or external ac, in-circuit measurements, plotting of impedance on an X-Y recorder, general data on impedance and Q, transmission line equations, how to use the Calculator. 30 pages.

AN 87
FM AND PM MEASUREMENTS

AN 88
LOGIC SYMBOLOGY

Describes in detail the system of logic circuit representation used by Hewlett-Packard. At the present time no single system is used by all manufacturers of digital equipment. The HP system is based on MIL-STD-806B, adapted to gain advantages in versatility, clarity, coverage, and simplicity. AN 88 includes a comparison of the HP system and that set forth in MIL-STD-806B. 30 pages.

AN 89
MAGNETIC TAPE RECORDING HANDBOOK

The purpose of this handbook is to give those people concerned with operation and maintenance of analog tape recorders a better understanding of the theories and techniques of magnetic recording. Practical considerations are offered relating to the application and limitations of the Direct and FM recording processes.

AN 90
DC POWER SUPPLY HANDBOOK

A basic reference book for any power supply user. It contains details on specifications, circuit principles, operating features, performance measurements, and special applications. 48 pages.

WWW.HPARCHIVE.COM
HOW VECTOR MEASUREMENTS EXPAND DESIGN CAPABILITIES - 1 to 1,100 MHz

Many voltage, or amplitude, ratio measurements are in reality vector quantities. That is, they have both magnitude and phase angle associated with the measurements. These vector measurements can speed up engineering design efforts by providing useful phase information that is normally inconvenient to measure. This note will describe just a few of the many ways to effectively use a vector voltmeter that operates over a 1 to 1,000 MHz frequency band. Among the subjects covered in this note are:

1) Measuring the phase and gain margins of amplifiers.
2) Transmission line electrical length measurements.
3) Matching the electrical length of cables very accurately.
4) Measuring group delay or phase nonlinearities.
5) Determining resonant frequencies with high resolution.
6) Using the vector voltmeter as an automatically tuned selective analyzer.
7) Making amplitude modulation measurements easily from 1 to 1,100 MHz with the vector voltmeter.

MULTIPLICATION AND DIVISION BY LOGARITHMS

Describes the use of Moseley Logarithmic Converters as computing elements. Used in pairs with suitable readout devices, such as a Moseley X-Y Recorder, multiplication or division of two independent voltages may be accomplished. Any readout may be used provided the total load resistance corresponds to the values established in the suggested circuits. 4 pages.

PROGRAM CONTROLLERS

Presents an interesting method of directing a process or machine via analog programming. Programs are simply drawn on a paper chart, up to 120 feet long. The Moseley Type F-3 Optical Line Follower is fitted in place of the pen on a Moseley X-Y Recorder equipped with chart drive, and Line Follower output directs the process. 4 pages.

POLAROGRAPHY

Chemical analysis frequently requires the determination of the metallic ions present in a given solution as well as their chemical properties in the particular solution. This is readily accomplished for many systems by polarography. This note will describe the development of an improved Polarograph utilizing specially modified Moseley X-Y Recorder. 4 pages.
These relationships permit a relatively easy assessment of the expected performance of these diodes in a variety of mixer and detector circuits. A number of graphs are presented which simplify the optimization of these diodes in mixer and detector circuits with respect to sensitivity, optimum bias, impedance, operating frequency, and bandwidth. 14 pages.

R: 15 May 67

AN 909

ELECTRICAL ISOLATION USING THE HPA 4310

In the HPA 4310 Photon Coupled Isolator, a gallium arsenide electroluminescent diode is optically coupled to a silicone photodiode but electrically decoupled. Electrical isolation using this technique is described. The Note also gives the equivalent circuit of the device along with suggested applications and their typical circuits. 4 pages.

AN 910

OPTOELECTRONIC COUPLING FOR CODING, MULTIPLEXING, AND CHANNEL SWITCHING

The stream of photons from a gallium arsenide electroluminescent diode carries enough energy to a silicon photodiode to enable operation of isolated electronic switches. Isolated switching, as with a relay, is thus possible and the Note gives design principles and typical circuits using the HPA 4310 Photon Coupled Isolator. 2 pages.

AN 911

LOW LEVEL DC OPERATION USING HPA PHOTOCHOPPERS

Threshold performance of chopper amplifiers can be extended to lower signal levels by using photochoppers. A brief discussion is given of the photochopper amplifier technique, showing various arrangements for applying negative feedback. Suggested circuits for driving the neon lamps are also described. 5 pages.

AN 912

AN ATTENUATOR DESIGN USING PIN DIODES

This Note discusses the use of PIN diodes as variable RF resistance elements controlled by dc bias. Through the use of this mechanism a constant impedance R-type attenuator network is developed. Control of attenuation from 1 to 20 dB is obtained through a variable dc bias. A wide frequency range of 10 MHz to 1 GHz in a single design is shown practical. Various curves of attenuation, VSWR, and harmonic distortion with respect to dc bias and RF power level are shown. 4 pages.

AN 913

STEP RECOVERY DIODE FREQUENCY MULTIPLIER DESIGN

Energy at one frequency can be converted to energy at a higher frequency by utilizing the properties of an impulse. The production of an impulse requires a very fast and properly-timed switch. The Step Recovery Diode is such a switch. AN 913 discusses the considerations involved in and circuits for using the Step Recovery Diode in harmonic generators and frequency comb generators. 24 pages.

AN 914

BIASING AND DRIVING CONSIDERATIONS FOR PIN DIODE RF SWITCHES AND MODULATORS

Discusses application of PIN diodes as RF switches and modulators from the standpoint of the video driving waveforms required and the means available to generate these waveforms. Emphasis is given to methods of achieving very fast switching speeds or high modulation frequencies. Includes 1) charge storage behavior of PIN diodes, 2) drive waveform requirements, 3) suggested forms of drive circuits (but not specific designs), 4) pulse leakage into the RF system, 5) testing and measurement methods and precautions for high-speed switches, and 6) speed measurements taken on a typical HPA 3504 switch under varying drive and RF conditions. 23 pages.

AN 915

THRESHOLD DETECTION AND DEMODULATION OF VISIBLE AND INFRARED RADIATION WITH PIN PHOTODIODES

Solid-state photodetectors, particularly PIN photodiodes, are compared for threshold signal applications with the more traditional multiplier phototubes. Relative functional merits are presented, and a family of spectral sensitivity curves for various types of photodetectors is given. Terminal circuit design principles and realizations are described. 5 pages.

AN 916

HPA GaAs SOURCES

HPA Gallium Arsenide EL (electroluminescent) diodes radiate in a narrow band at a wavelength of 9000 Å when forward biased. When properly utilized, the radiation from the EL diode can be switched on and off in less than 100 nanoseconds. AN 916 discusses how the characteristics of this EL diode may be applied to optical circuits and describes design principles for obtaining optimum performance. 2 pages.

AN 917

HPA PIN PHOTODIODE

HPA silicon planar PIN photodiodes are ultrafast detectors of visible and near infrared radiation. The
low dark current of the planar diodes enables detection of very low radiation levels. AN 917 discusses how the characteristics of the HPA silicon planar photodiode apply in optical circuits and explains design principles for obtaining optimum performance. 2 pages.

AN 13510A-2

MEASURING TRANSISTOR Y PARAMETERS

Discusses how to use the 13510A Transistor Test Jig with the 250A RX Meter to measure Y parameters. Includes examples of measurements and correction calculations. 4 pages.

ANC 1-67

CLARIFICATION OF SOLUTIONS FOR LIGHT SCATTERING

Removal of all suspended insoluble material, including dust and gel particles, from light scattering solutions is extremely important, and no efforts to improve clarity are wasted. This Note discusses methods for removing insoluble particles, with considerable detail on various types of filters. Includes tables of chemical compatibility and resistance for membrane filters. 7 pages.

TL 2

CONSTANT VOLTAGE/CONSTANT CURRENT REGULATED POWER SUPPLIES

Covers the characteristics of both constant-voltage and constant-current regulated dc power supplies. Traces the evolution of these supplies, and presents specific application information on automatically charging and discharging batteries. 17 pages.

TL 4

MEASUREMENT OF OUTPUT IMPEDANCE OF A CONSTANT-VOLTAGE POWER SUPPLY

Load devices often draw varying amounts of current from a dc supply, so that the output consists of an ac component superimposed on the dc output. This tech letter shows how to determine the output impedance of a constant-voltage dc power supply over a wide band of ac-component frequencies, and illustrates how constant the output voltage can remain in spite of load current variations. 6 pages.

TL 5

METHOD OF ACHIEVING CONSTANT-CURRENT OPERATION UTILIZING A CONSTANT-VOLTAGE POWER SUPPLY

Describes the simple conversion of 16 different H-Lab dc power supplies from constant-voltage to constant-current operation by adding only one external monitoring resistor. 4 pages.

TL 7

NOTES ON DC POWER-SUPPLY ISOLATION MEASUREMENT

When considering a given power supply for use in a floating dc application, the isolation properties of the supply must be understood. Leakage components defining these properties include: shunt capacitance, leakage resistance, and noise current between supply output and ground; ac input to dc output capacitance; and breakdown voltage to ground. Tech Letter 7 contains an analysis of these leakage components and suggests ways to measure them. 8 pages.
<p>| AN 1 | Unassigned | Page |
| AN 2 | Unassigned | |
| AN 3 | Measurement of RF Pulse Carrier Frequency | 1 |
| AN 4 | thru | |
| AN 11 | Unassigned | |
| AN 12 | How a Helix Backward-Wave Tube Works | 1 |
| AN 13 | Unassigned | |
| AN 14 | Unassigned | |
| AN 15 | Distortion and Intermodulation (Discontinued) | |
| AN 16 | Waves on Transmission Lines | 1 |
| AN 17 | Square Wave and Pulse Testing | 1 |
| AN 18 | Unassigned | |
| AN 19 | Unassigned | |
| AN 20 | HP Signal Generator Output Attenuators | 2 |
| AN 21 | thru | |
| AN 23 | Unassigned | |
| AN 24 | Pulse Modulation of Audio Oscillators (Discontinued) | |
| AN 25 | Cathode Ray Tube Phosphors and the Internal Graticule CRT. | 2 |
| AN 26 | thru | |
| AN 28 | Unassigned | |
| AN 29 | A Convenient Method for Measuring Phase Shift | 2 |
| AN 30 | Measurement of Cable Characteristics (Discontinued) | |
| AN 31 | Externally Driving the 202A Low Frequency Function Generator (Discontinued) | |
| AN 32 | thru | |
| AN 35 | Unassigned | |
| AN 36 | Sampling Oscillography | 2 |
| AN 37 | thru | |
| AN 43 | Unassigned | |
| AN 44 | Synchronizing the Model 185A Oscilloscope (Discontinued) | |
| AN 44 | D | |
| AN 44 | Characteristics and Use of HP Sampling Oscilloscope Probe and Accessories (Discontinued) | |
| AN 45 | Unassigned | |
| AN 46 | Introduction to Microwave Measurements (Discontinued) | |
| AN 47 | Unassigned | |
| AN 48 | Applications of the HP Model 218A, a Versatile General-Purpose Pulse and Delay Generator | 2 |
| AN 49 | Unassigned | |
| AN 50 | Unassigned | |
| AN 51 | Modified 485B Provides Convenient and Economical Mixer for X- and H-Band Laboratory Receivers (Discontinued) | |
| AN 52 | Frequency and Time Standards | 2 |
| AN 53 | Unassigned | |
| AN 54 | The Ratio Meter in Microwave Swept-Frequency Measurements (Superseded by AN 65) | |
| AN 55 | Unassigned | |
| AN 56 | Microwave Mismatch Error Analysis | 2 |
| AN 57 | Noise Figure Primer | 2 |
| AN 58 | The PIN Diode as a Microwave Modulator | 2 |
| AN 59 | Loop Gain Measurements with HP Wave Analyzers | 2 |
| AN 60 | Which AC Voltmeter? | 3 |
| AN 61 | Leveled Swept-Frequency Measurements with Oscilloscope Display (Superseded by AN 65) | |
| AN 62 | Time Domain Reflectometry | 3 |
| AN 63 | Spectrum Analysis | 3 |
| AN 63A | More on Spectrum Analysis | 3 |
| AN 63B | The 8441A Preselector: Advancement in the Art of Spectrum Analysis | 3 |
| AN 63C | Measurement of White Noise Power Density with the H10-851B/8551B Spectrum Analyzer | 3 |
| AN 63D | Frequency Calibrating the 851/8551 Spectrum Analyzer with the 8406A Frequency Comb Generator | 3 |
| AN 64 | Microwave Power Measurements | 4 |
| AN 65 | Swept-Frequency Techniques | 4 |
| AN 66 | Swept SWR Tests in X-Band Coax (Discontinued) | |
| AN 67 | Cable Testing with Time Domain Reflectometry | 4 |
| AN 68 | Accurate Receiver Sensitivity Measurements | 4 |
| AN 69 | Which DC Voltmeter? | 4 |
| AN 70 | Precision DC Voltage Measurements | 4 |</p>
<table>
<thead>
<tr>
<th>AN 71</th>
<th>Advances in RF Measurements Using Modern Signal Generators, 50kHz-480MHz</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN 72</td>
<td>Integral Counting</td>
<td>4</td>
</tr>
<tr>
<td>AN 73</td>
<td>Calibration of a Gamma Ray Spectrometer</td>
<td>4</td>
</tr>
<tr>
<td>AN 74</td>
<td>Not Assigned</td>
<td></td>
</tr>
<tr>
<td>AN 75</td>
<td>Selected Articles on Time Domain Reflectometry Applications</td>
<td>5</td>
</tr>
<tr>
<td>AN 76</td>
<td>Using the 230A Power Amplifier</td>
<td>5</td>
</tr>
<tr>
<td>AN 77-1</td>
<td>Transistor Parameter Measurements</td>
<td>5</td>
</tr>
<tr>
<td>AN 77-2</td>
<td>Precision Frequency Comparison</td>
<td>5</td>
</tr>
<tr>
<td>AN 77-3</td>
<td>Complex Impedance Measurements</td>
<td>5</td>
</tr>
<tr>
<td>AN 78-1</td>
<td>Calibrating The Quartz Thermometer</td>
<td>5</td>
</tr>
<tr>
<td>AN 78-2</td>
<td>Molecular Weight Determination with The Quartz Thermometer</td>
<td>5</td>
</tr>
<tr>
<td>AN 78-3</td>
<td>Calorimetry and The Quartz Thermometer</td>
<td>5</td>
</tr>
<tr>
<td>AN 79</td>
<td>Statistical Comparison of a Digital System and a Ratemeter for Nuclear Measurements</td>
<td>5</td>
</tr>
<tr>
<td>AN 80</td>
<td>Not assigned</td>
<td></td>
</tr>
<tr>
<td>AN 81</td>
<td>Low-Frequency Phase-Shift Measurement Techniques</td>
<td>6</td>
</tr>
<tr>
<td>AN 82</td>
<td>Power Supply/Amplifier Concepts and Modes of Operation</td>
<td>6</td>
</tr>
<tr>
<td>AN 83</td>
<td>Increased Output Resistance for DC Regulated Power Supplies</td>
<td>6</td>
</tr>
<tr>
<td>AN 84</td>
<td>Swept SWR Measurement in Coax</td>
<td>6</td>
</tr>
<tr>
<td>AN 85</td>
<td>Using a Reversible Counter</td>
<td>6</td>
</tr>
<tr>
<td>AN 86</td>
<td>Using the Vector Impedance Meters</td>
<td>6</td>
</tr>
<tr>
<td>AN 87</td>
<td>FM and PM Measurements</td>
<td>6</td>
</tr>
<tr>
<td>AN 88</td>
<td>Logic Symbology</td>
<td>6</td>
</tr>
<tr>
<td>AN 89</td>
<td>Magnetic Tape Recording Handbook</td>
<td>6</td>
</tr>
<tr>
<td>AN 90</td>
<td>DC Power Supply Handbook</td>
<td>6</td>
</tr>
<tr>
<td>AN 91</td>
<td>How Vector Measurements Expand Design Capabilities 1 to 1000 MHz</td>
<td>7</td>
</tr>
<tr>
<td>AN 92 thru AN 100</td>
<td>Unassigned</td>
<td></td>
</tr>
<tr>
<td>AN 101</td>
<td>Multiplication and Division by Logarithms</td>
<td>7</td>
</tr>
<tr>
<td>AN 102</td>
<td>Program Controllers</td>
<td>7</td>
</tr>
<tr>
<td>AN 103</td>
<td>Strain-Gage Recording 50-cycle Operation (Discontinued)</td>
<td></td>
</tr>
<tr>
<td>AN 104</td>
<td>Polarography</td>
<td>7</td>
</tr>
<tr>
<td>Issue Number</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>AN 106</td>
<td>Electric Motor Performance Testing</td>
<td>7</td>
</tr>
<tr>
<td>AN 107</td>
<td>Guard Circuits</td>
<td>7</td>
</tr>
<tr>
<td>AN 108</td>
<td>Hysteresis Curve</td>
<td>7</td>
</tr>
<tr>
<td>AN 109 thru AN 201</td>
<td>RF Waveform Analysis 202-Series FM-AM Signal Generators.</td>
<td>7</td>
</tr>
<tr>
<td>AN 202-1</td>
<td>(Converted to Service Note, is now SN 202H-4)</td>
<td></td>
</tr>
<tr>
<td>AN 202-2</td>
<td>Measurement of AM Suppression in FM Receiving Systems (Discontinued)</td>
<td></td>
</tr>
<tr>
<td>AN 203 thru AN 903</td>
<td>Unassigned</td>
<td></td>
</tr>
<tr>
<td>AN 904</td>
<td>The PIN Diode</td>
<td>7</td>
</tr>
<tr>
<td>AN 905</td>
<td>Unassigned</td>
<td></td>
</tr>
<tr>
<td>AN 906</td>
<td>Unassigned</td>
<td></td>
</tr>
<tr>
<td>AN 907</td>
<td>The Hot Carrier Diode. Theory, Design, and Application</td>
<td>7</td>
</tr>
<tr>
<td>AN 908</td>
<td>Frequency Multiplication with the Step Recovery Diode (Superseded by AN 913)</td>
<td>8</td>
</tr>
<tr>
<td>AN 909</td>
<td>Electrical Isolation Using the HPA 4310</td>
<td>8</td>
</tr>
<tr>
<td>AN 910</td>
<td>Optoelectronic Coupling for Coding, Multiplexing, and Channel Switching</td>
<td>8</td>
</tr>
<tr>
<td>AN 911</td>
<td>Low Level DC Operation Using HPA Photochoppers</td>
<td>8</td>
</tr>
<tr>
<td>AN 912</td>
<td>An Attenuator Design Using PIN Diodes</td>
<td>8</td>
</tr>
<tr>
<td>AN 913</td>
<td>Step Recovery Diode Frequency Multiplier Design</td>
<td>8</td>
</tr>
<tr>
<td>AN 914</td>
<td>Biasing and Driving Considerations for PIN Diode RF Switches and Modulators.</td>
<td>8</td>
</tr>
<tr>
<td>AN 915</td>
<td>Threshold Detection and Demodulation of Visible and Infrared Radiation with PIN Photodiodes</td>
<td>8</td>
</tr>
<tr>
<td>AN 916</td>
<td>HPA GaAs SOURCES</td>
<td>8</td>
</tr>
<tr>
<td>AN 917</td>
<td>HPA PIN Photodiode</td>
<td>8</td>
</tr>
<tr>
<td>AN 13510A-2</td>
<td>Measuring Transistor Y Parameters</td>
<td>9</td>
</tr>
<tr>
<td>ANC 1-67</td>
<td>Clarification of Solutions for Light Scattering</td>
<td>9</td>
</tr>
<tr>
<td>TL 1</td>
<td>Remote Programming (Replaced by AN 90)</td>
<td>9</td>
</tr>
<tr>
<td>TL 2</td>
<td>Constant-Voltage/Constant-Current Regulated Power Supplies</td>
<td>9</td>
</tr>
<tr>
<td>TL 3</td>
<td>Measurement of Line and Load Regulation of DC Power Supplies (Replaced by AN 90)</td>
<td>9</td>
</tr>
<tr>
<td>TL 4</td>
<td>Measurement of Output Impedance of a Constant Voltage Power Supply</td>
<td>9</td>
</tr>
<tr>
<td>TL 5</td>
<td>Method of Achieving Constant-Current Operation Utilizing a Constant-Voltage Power Supply</td>
<td>9</td>
</tr>
<tr>
<td>TL 6</td>
<td>Measurement of Transient Recovery Time of Constant-Voltage Regulated DC Power Supplies (Replaced by AN 90)</td>
<td>9</td>
</tr>
<tr>
<td>TL 7</td>
<td>Notes on DC Power Supply Isolation Measurement</td>
<td>9</td>
</tr>
<tr>
<td>TL 8</td>
<td>6920A Meter Calibrator (Discontinued)</td>
<td></td>
</tr>
</tbody>
</table>
SUBJECT INDEX

AC Measurements
- AN 60 Which AC Voltmeter? .. 3

Angular Measurements
- AN 85 Using a Reversible Counter 6

Antenna Testing
- AN 63 Spectrum Analysis ... 3
- AN 63A More on Spectrum Analysis 3
- AN 76 Using the 230A Power Amplifier 5

Attenuation Measurement
- AN 65 Swept-Frequency Techniques 4

Attenuators
- AN 20 HP Signal Generator Output Attenuators 2
- AN 58 The PIN Diode as a Microwave Modulator 2
- AN 912 An Attenuator Design Using PIN Diodes 8

Backward-Wave Tube
- AN 12 How a Backward-Wave Tube Works 1

Cable Testing
- AN 62 Time Domain Reflectometry 3
- AN 67 Cable Testing with Time Domain Reflectometry 4

Calorimetry
- AN 78-3 Calorimetry and The Quartz Thermometer 5

Cathode Ray Tubes
- AN 25 Cathode Ray Tube Phosphors and the Internal Graticule CRT ... 2

Chemical
- AN 105 Polarography .. 7
- ANC 1-67 Clarification of Solutions for Light Scattering 9

Coax Systems
- AN 65 Swept-Frequency Techniques 4
- AN 84 Swept SWR Measurement in Coax (1.8-18GHz) 6

Computing Devices
- AN 101 Multiplication and Division by Logarithms 7

Counter, Reversible
- AN 85 Using a Reversible Counter 6

Coupling Devices
- AN 909 Electrical Isolation Using the HPA 4310 8
- AN 910 Optoelectronic Coupling for Coding, Multiplexing, and Channel Switching 8

Current Sources
- AN 82 Power Supply/Amplifier Concepts and Modes of Operation ... 6
- AN 909 Electrical Isolation Using the HPA 4310 8
- TL 5 Method of Achieving Constant-Current Operation Utilizing a Constant-Voltage Power Supply ... 9
Subject Index (continued)

DC Measurements

AN 69	Which DC Voltmeter?	4
AN 70	Precision DC Voltage Measurements	4
AN 90	DC Power Supply Handbook	6

Digital Delay Generators

| AN 48 | Applications of the HP Model 218A, a Versatile General-Purpose Pulse and Delay Generator | 2 |

Diodes

AN 58	The PIN Diode as a Microwave Modulator	2
AN 904	The PIN Diode	7
AN 907	The Hot Carrier Diode. Theory, Design, and Application	7
AN 909	Electrical Isolation Using the HPA 4310	8
AN 912	An Attenuator Design Using PIN Diodes	8
AN 913	Step Recovery Diode Frequency Multiplier Design	8

Error Analysis, Microwave Measurements

| AN 56 | Microwave Mismatch Error Analysis | 2 |

Filters, Membrane

| ANC 1-67 | Clarification of Solutions for Light Scattering | 9 |

Flow Measurement

| AN 85 | Using a Reversible Counter | 6 |

Frequency Measurements

AN 3	Measurement of RF Pulse Carrier Frequency	1
AN 63	Spectrum Analysis	3
AN 63A	More on Spectrum Analysis	3
AN 65	Swept-Frequency Techniques	4
AN 77-2	Precision Frequency Comparison	5

Frequency and Time Standards

| AN 52 | Frequency and Time Standards | 2 |

Frequency Modulation Measurement

| AN 87 | FM and PM Measurements | 6 |

Hysteresis Curve Plotting

| AN 81 | Low-Frequency Phase-Shift Measurement Techniques | 6 |
| AN 108 | Hysteresis Curve Plotting | 7 |

Impedance Measurements

AN 65	Swept-Frequency Techniques	4
AN 77-3	Complex Impedance Measurements	5
AN 86	Using The Vector Impedance Meters	6
AN 91	How Vector Measurements Expand Design Capabilities 1 to 1000 MHz	7

Isolation Techniques

| AN 909 | Electrical Isolation Using the HPA 4310 | 8 |
| AN 910 | Optoelectronic Coupling for Coding, Multiplexing, and Channel Switching | 8 |

Laser Interferometer

<p>| AN 85 | Using a Reversible Counter | 6 |</p>
<table>
<thead>
<tr>
<th>Subject Index Page 17</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUBJECT INDEX (continued)</td>
</tr>
<tr>
<td>Light Scattering Solutions</td>
</tr>
<tr>
<td>ANC 1-67 Clarification of Solutions for Light Scattering</td>
</tr>
<tr>
<td>Linear Systems, Testing of</td>
</tr>
<tr>
<td>AN 101 Multiplication and Division by Logarithms</td>
</tr>
<tr>
<td>Logic Symbology</td>
</tr>
<tr>
<td>AN 88 Logic Symbology</td>
</tr>
<tr>
<td>Loop Gain Measurements</td>
</tr>
<tr>
<td>AN 59 Loop Gain Measurements with HP Wave Analyzers</td>
</tr>
<tr>
<td>Membrane Filters</td>
</tr>
<tr>
<td>ANC 1-87 Clarification of Solutions for Light Scattering</td>
</tr>
<tr>
<td>Loop-Gain Measurements</td>
</tr>
<tr>
<td>AN 59 Loop Gain Measurements with HP Wave Analyzers</td>
</tr>
<tr>
<td>Microwave Measurements</td>
</tr>
<tr>
<td>AN 3 Measurement of RF Pulse Carrier Frequency</td>
</tr>
<tr>
<td>AN 56 Microwave Mismatch Error Analysis</td>
</tr>
<tr>
<td>AN 64 Microwave Power Measurements</td>
</tr>
<tr>
<td>AN 65 Swept-Frequency Techniques</td>
</tr>
<tr>
<td>Molecular Weight Measurement</td>
</tr>
<tr>
<td>AN 78-2 Molecular Weight Determination with The Quartz Thermometer</td>
</tr>
<tr>
<td>Motor Testing</td>
</tr>
<tr>
<td>AN 106 Electric Motor Performance Testing</td>
</tr>
<tr>
<td>Noise</td>
</tr>
<tr>
<td>AN 57 Noise Figure Primer</td>
</tr>
<tr>
<td>AN 85 Using a Reversible Counter (to measure avg value of noisy signal)</td>
</tr>
<tr>
<td>AN 63C Measurement of White Noise Power Density with the H10-851B/8551B Spectrum Analyzer</td>
</tr>
<tr>
<td>Nuclear</td>
</tr>
<tr>
<td>AN 72 Integral Counting</td>
</tr>
<tr>
<td>AN 73 Calibration of a Gamma Ray Spectrometer</td>
</tr>
<tr>
<td>AN 79 Statistical Comparison of a Digital System and a Ratemeter for Nuclear Measurements</td>
</tr>
<tr>
<td>Optical Circuits</td>
</tr>
<tr>
<td>AN 916 HPA GaAs Sources</td>
</tr>
<tr>
<td>AN 917 HPA PIN Photodiode</td>
</tr>
<tr>
<td>Optical Gratings</td>
</tr>
<tr>
<td>AN 85 Using a Reversible Counter</td>
</tr>
<tr>
<td>Optical Tachometer</td>
</tr>
<tr>
<td>AN 85 Using a Reversible Counter</td>
</tr>
<tr>
<td>Optoelectronic Coupling</td>
</tr>
<tr>
<td>AN 909 Electrical Isolation Using the HPA 4310</td>
</tr>
<tr>
<td>AN 910 Optoelectronic Coupling for Coding, Multiplexing, and Channel Switching</td>
</tr>
<tr>
<td>Oscilloscope</td>
</tr>
<tr>
<td>AN 29 A Convenient Method for Measuring Phase-Shift</td>
</tr>
<tr>
<td>AN 36 Sampling Oscillography</td>
</tr>
<tr>
<td>AN 62 Time Domain Reflectometry</td>
</tr>
<tr>
<td>AN 65 Swept-Frequency Techniques</td>
</tr>
<tr>
<td>AN 108 Hysteresis Curve Plotting</td>
</tr>
</tbody>
</table>
SUBJECT INDEX (continued)

Paper Speeds, Comparison Measurements
- **AN 85** Using a Reversible Counter .. 6

Phase Modulation Measurement
- **AN 87** FM and PM Measurements .. 6

Phase-Shift Measurements
- **AN 29** A Convenient Method for Measuring Phase-Shift 2
- **AN 81** Low-Frequency Phase-Shift Measurement Techniques 6

Phosphors
- **AN 25** Cathode Ray Tube Phosphors and the Internal Graticule CRT 2

Photochoppers
- **AN 911** Low-Level DC Operation Using HPA Photochoppers 8

Polarography
- **AN 105** Polarography .. 7

Power Amplifier Applications
- **AN 76** Using the 230A Power Amplifier .. 5
- **AN 82** Power Supply/Amplifier Concepts and Modes of Operation 6

Power Measurements
- **AN 64** Microwave Power Measurements .. 4
- **AN 65** Swept-Frequency Techniques .. 4

Power Supplies
- **AN 82** Power Supply/Amplifier Concepts and Modes of Operation 6
- **AN 83** Increased Output Resistance for DC Regulated Power Supplies 6
- **AN 90** DC Power Supply Handbook ... 6
- **TL 2** Constant-Voltage/Constant-Current Regulated Power Supplies 9
- **TL 4** Measurement of Output Impedance of a Constant-Voltage Power Supply.. 9
- **TL 5** Method of Achieving Constant-Current Operation Utilizing a Constant-Voltage Power Supply .. 9
- **TL 7** Notes on DC Power Supply Isolation Measurement 9

Pulse Measurements
- **AN 3** Measurement of RF Pulse Carrier Frequency 1
- **AN 48** Applications of the HP Model 218A ... 2
- **AN 87** FM and PM Measurements .. 6

Pulses, Use of in Testing
- **AN 17** Square-Wave and Pulse Testing ... 1

Quartz Thermometry
- **AN 78-1** Calibrating The Quartz Thermometer 5
- **AN 78-2** Molecular Weight Determination with The Quartz Thermometer 5
- **AN 78-3** Calorimetry and The Quartz Thermometer 5

Receiver Measurements
- **AN 68** Accurate Receiver Sensitivity Measurements 4
- **AN 76** Using the 230A Power Amplifier ... 5
Table: Subject Index

Reflectometers
- AN 62 Time Domain Reflectometry 3
- AN 65 Swept-Frequency Techniques 4
- AN 67 Cable Testing with Time Domain Reflectometry 4
- AN 75 Selected Articles on Time Domain Reflectometry 5

RFI Testing
- AN 63 Spectrum Analysis .. 3
- AN 63A More on Spectrum Analysis 3
- AN 76 Using the 230A Power Amplifier 5

Signal Sources
- AN 20 Signal Generator Output Attenuators 2
- AN 48 Applications of the Model 218A, A Versatile, General-Purpose Pulse and Delay Generator 2
- AN 71 Advances in RF Measurements Using Modern Signal Generators, 50kHz-480MHz ... 4

Smith Chart
- AN 16 Waves on Transmission Lines 1

Spectrum Analysis
- AN 58 The PIN Diode as a Microwave Modulator 2
- AN 63 Spectrum Analysis .. 3
- AN 63A More on Spectrum Analysis 3
- AN 63B The 8441A Preslector: Advancement in the Art of Spectrum Analysis ... 3
- AN 63C Measurement of White Noise Power Density with the H10-851B/8551B Spectrum Analyzer .. 3
- AN 63D Frequency Calibrating the 851/8551 Spectrum Analyzer with the 8406A Frequency Comb Generator 3

Square Waves, Use of in Testing
- AN 17 Square-Wave and Pulse Testing 1

SWR Measurements
- AN 16 Waves on Transmission Lines 1
- AN 84 Swept SWR Measurement in Coax 6

Swept Frequency Measurements
- AN 62 Time Domain Reflectometry 3
- AN 65 Swept-Frequency Techniques 4
- AN 75 Selected Articles on Time Domain Reflectometry Applications .. 5
- AN 84 Swept SWR Measurement in Coax 6

Symbology, Logic
- AN 88 Logic Symbology ... 6

Synchronizers
- AN 71 Advances in RF Measurements Using Modern Signal Generators, 50kHz-480MHz .. 4

Tachometer Generator
- AN 85 Using a Reversible Counter 6

Time Domain Reflectometry
- AN 62 Time Domain Reflectometry 3
- AN 65 Swept-Frequency Techniques 4

WWW.HPARCHIVE.COM
SUBJECT INDEX (continued)

Time Domain Reflectometry (continued)

AN 67 Cable Testing with Time Domain Reflectometry .. 4
AN 75 Selected Articles on Time Domain Reflectometry Applications 5

Transducers, Measurement with

AN 85 Using a Reversible Counter ... 6
AN 108 Hysteresis Curve Plotting .. 7

Transforms

AN 17 Square-Wave and Pulse Testing .. 1

Transistor Parameters, Measurement of

AN 77-1 Transistor Parameter Measurements ... 5
AN 13510-2 Measuring Transistor Y Parameters .. 9

Transmission Lines

AN 16 Waves on Transmission Lines .. 1
AN 62 Time Domain Reflectometry ... 3

Turbine Flow-meter

AN 85 Using a Reversible Counter ... 6

Vector Measurements

AN 77-3 Complex Impedance Measurements ... 5
AN 86 Using the Vector Impedance Meters ... 6
AN 91 How Vector Measurements Expand Design Capabilities 1 to 1000 MHz 7

Volume, Measurement of

AN 85 Using a Reversible Counter ... 6

Wave Analyzers

AN 59 Loop Gain Measurements with HP Wave Analyzers .. 2

White Noise Power Density, Measurement of

AN 63C Measurement of White Noise Power Density with the H10-851B/8551B Spectrum Analyzer ... 3

Work Table, Monitoring Position of

AN 85 Using a Reversible Counter ... 6

X-Y Recorders

AN 101 Multiplication and Division by Logarithms ... 7
AN 102 Program Controllers ... 7
AN 105 Polarography .. 7
AN 106 Electric Motor Performance Testing ... 7
AN 107 Guard Circuits ... 7
AN 108 Hysteresis Curve Plotting .. 7
EUROPE

AUSTRIA
Hewlett-Packard Austria GmbH
Vienna 1/5/71
Tel 612 181
Fax 5496
Cable: INTO Vienna

BELGIUM
Ronnegade 1
Wissenschaftliche lnstrumente
Tel: 112 20 20
Fax 2642
Cable: INTO Brussels

FRANCE
Hewlett-Packard France
2 Rue Tete d’Or
Lyon 6 - Rhone
Tel: 52 35 66
Fax 52 00 36
Cable: HP PACKS France

GERMANY
Hewlett-Packard Vertriebs-GmbH
Lichtenburger Strasse 30
Bonn 1
Tel: 68 36 36
Fax 69 51 22
Cable: HP PACKS Hamburg

GREECE
Kostas Karapanis
18 Ermou Street
Athens 121
Tel: 230 30 20
Fax 230 30 20
Cable: RARAI Athens

IRELAND
Hewlett-Packard Ltd.
224 Bath Road
Slough, Bucks, England
Tel: Slough 28406-9, 29486-9
Fax: HPFIE Slough

ITALY
Hewlett-Packard Italiana S.p.A.
Viale Lungarno 46
Milan
Tel: 69 15 84
Fax: HEWPACK Milan
Cable: HEWPACK Milan

NETHERLANDS
Hewlett-Packard Netherlands B.V.
Reginierstraat 13
9332 HE Utrecht
Tel: 030 21 22
Fax 030 21 22
Cable: HP PACKS Utrecht

NETHERLANDS
Hewlett-Packard Benelux N.V.
do Bisschop4 1043
Amsterdam, 2.2
Tel: 02 77 77
Fax: 02 77 77
Cable: PALOBEN Amsterdam

FOR AREAS NOT LISTED, CONTACT: Hewlett-Packard S.A.; 54 Route des Acacias Geneva, Switzerland; Tel: (022) 42 81 50; Telex: 22486; Cable: HEWPACKSA

NEW ZEALAND
Sample Electronics (N.Z.) Ltd.
4 Malipo Street
Onehunga S.E. 5
Auckland
Tel: 687-556
Fax: ELPAMS Auckland

AFRICA, ASIA, AUSTRALIA

AFRICA
Hewlett-Packard Export Marketing; 1501 Page Mill Road; Palo Alto, California 94304; Tel: (415) 326-7000; Telex: 034846; Cable: HEWPACK Palo Alto

AFRICA
Hewlett-Packard Export Marketing; 1501 Page Mill Road; Palo Alto, California 94304; Tel: (415) 326-7000; Telex: 034846; Cable: HEWPACK Palo Alto

HONG KONG
Schmidt & Co. (Hong Kong) Ltd.
P.O. Box 297
1515, Prince’s Building
Central, Hong Kong
Tel: 241188, 22378
Fax: 241188
Cable: SCHMIDTCH Hong Kong

INDIA
The Scientific Instrument Co., Ltd.
6, Tij Bahadur Sagap Road
Allahabad 1
Tel: 23421
Fax: SICO Allahabad
The Scientific Instrument Co., Ltd.
240, Dr. Dadabhai Naoroji Road
Bombay 1
Tel: 262642
Fax: 262642
Cable: SICO Bombay

JAPAN
Yokogawa-Hewlett-Packard Ltd.
Shinagawa Building
No. 8, Umeda
Kita-ku, Osaka
Tel: 073-6341
Fax: 073-6341
Cable: BASTEL Tel-Aviv

KOREA
American Trading Co., Korea, Ltd.
Seoul P.O. Box 1103
112-35 Sokong-Dong
Seoul
Tel: 3700-2361
Fax: AMTDOK Seoul
Cable: AMTDOK Seoul

NEW ZEALAND
Sample Electronics (N.Z.) Ltd.
4 Malipo Street
Onehunga S.E. 5
Auckland
Tel: 687-556
Fax: ELPAMS Auckland

PAKISTAN (EAST)
Mushko & Company, Ltd.
No. 8, I-chome, Yawoei
Islamabad
Tel: 46078, 46936
Fax: VICTRONIX Lahore

PAKISTAN (WEST)
Mechanical and Combustion Engineering Company Ltd.
9, Jinnah Avenue
Karachi 3
Tel: 51079, 52927
Fax: COOPERATOR Karachi
Cable: COOPERATOR Karachi

SINGAPORE
MOCOMB Singapore
Cable: MOCOMB Singapore

SOUTH AFRICA
F. H. Planter & Co. (Pty.), Ltd.
Rosella House
Buitenvlei Street
Cape Town
Tel: 38317
Fax: AUTOPHONE Cape Town

FOR AREAS NOT LISTED, CONTACT: Hewlett-Packard S.A.; 54 Route des Acacias Geneva, Switzerland; Tel: (022) 42 81 50; Telex: 22486; Cable: HEWPACKSA Geneva

AFRICA
Hewlett-Packard Export Marketing; 1501 Page Mill Road; Palo Alto, California 94304; Tel: (415) 326-7000; Telex: 034846; Cable: HEWPACK Palo Alto

AFRICA
Hewlett-Packard Export Marketing; 1501 Page Mill Road; Palo Alto, California 94304; Tel: (415) 326-7000; Telex: 034846; Cable: HEWPACK Palo Alto

HONG KONG
Schmidt & Co. (Hong Kong) Ltd.
P.O. Box 297
1515, Prince’s Building
Central, Hong Kong
Tel: 241188, 22378
Fax: 241188
Cable: SCHMIDTCH Hong Kong

INDIA
The Scientific Instrument Co., Ltd.
6, Tij Bahadur Sagap Road
Allahabad 1
Tel: 23421
Fax: SICO Allahabad
The Scientific Instrument Co., Ltd.
240, Dr. Dadabhai Naoroji Road
Bombay 1
Tel: 262642
Fax: 262642
Cable: SICO Bombay

JAPAN
Yokogawa-Hewlett-Packard Ltd.
Shinagawa Building
No. 8, Umeda
Kita-ku, Osaka
Tel: 073-6341
Fax: 073-6341
Cable: BASTEL Tel-Aviv

KOREA
American Trading Co., Korea, Ltd.
Seoul P.O. Box 1103
112-35 Sokong-Dong
Seoul
Tel: 3700-2361
Fax: AMTDOK Seoul
Cable: AMTDOK Seoul

NEW ZEALAND
Sample Electronics (N.Z.) Ltd.
4 Malipo Street
Onehunga S.E. 5
Auckland
Tel: 687-556
Fax: ELPAMS Auckland

PAKISTAN (EAST)
Mushko & Company, Ltd.
No. 8, I-chome, Yawoei
Islamabad
Tel: 46078, 46936
Fax: VICTRONIX Lahore

PAKISTAN (WEST)
Mechanical and Combustion Engineering Company Ltd.
9, Jinnah Avenue
Karachi 3
Tel: 51079, 52927
Fax: COOPERATOR Karachi
Cable: COOPERATOR Karachi

SINGAPORE
MOCOMB Singapore
Cable: MOCOMB Singapore

SOUTH AFRICA
F. H. Planter & Co. (Pty.), Ltd.
Rosella House
Buitenvlei Street
Cape Town
Tel: 38317
Fax: AUTOPHONE Cape Town

FOR AREAS NOT LISTED, CONTACT: Hewlett-Packard S.A.; 54 Route des Acacias Geneva, Switzerland; Tel: (022) 42 81 50; Telex: 22486; Cable: HEWPACKSA Geneva